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Abstract

We treat the problem of measuring and estimating gaps between groups (e.g. gender,
ethnicity) and counterfactual effects when the outcome is multivariate. This is an
extension of the standard gender pay gap that has a univariate outcome, typically wage
or income. We refer to such gaps as well-being gaps. We extend decomposition of
the gap into counterfactual effects, pursuant to the multidimensionality of outcomes.
However, in our setting, gaps can also be decomposed in a different form, namely, the one
that distinguishes the dependence between outcomes from the impact of the marginal
distributions. Greater concordance means, ceteris paribus, more inequality or divergence
between groups. Combining two forms of decomposition gives the full decomposition
of multivariate gaps. Overall, we provide a toolbox to perform multidimensional gap
analysis based on known tools and newly proposed methods. We apply our methodology
to study of the gender gap in wages and leisure. In recent years, there has been a growing
body of research that has delved into the differences between genders when it comes to
both paid and unpaid work. The utilization of time use surveys has greatly enhanced
empirical research in this area. The data has revealed that on average, women tend to
take on more unpaid care responsibilities than men. As a result, men earn more and
enjoy more leisure time when the two are analyzed separately. We contribute to this
literature by utilizing the American Time Use Survey to estimate and decompose gaps
between genders in wages and leisure considered jointly.

Keywords: gender gaps; well-being; counterfactual distribution, decomposition

JEL classification: D30; I31; C02

1 Introduction

The interest in the gender gap, or racial gap, and similar questions of inequality derives from

an interest in well-being of target populations and allocation and distributive questions in
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general. The choice of wages or ’income’ as a basis for measuring inequality, poverty, mo-

bility, and the gaps thereof reflects convenience and primacy of income as an indicator of

well-being. Health status, educational attainment, or social amenities provided by commu-

nities in which families and individuals reside, jointly determine their well-being. Well being

is a latent concept, like happiness, and the challenges in its measurement have been widely

acknowledged for many years. Recent Nobel prizes in economics (Angus Deaton for his

efforts in these regards, and Amartya Sen for poineering contributions) reflect the centrality

and urgency of metters herein. The multivariate analysis of well-being gaps is diminished

when it is conducted in any one dimension, since the same dollar level of wages has vastly

different values for a healthy or unhealthy individual, or one that has the investment and

consumption benefits of high levels of educational attainment, living in a society that offers

strong social nets. One-dimensional accounting is extremely subjective, as it places zero

weights on all other sources of well-being and their interactions. Multivariate distributions

of attributes must be contrasted for a more informed and realistic view of allocations and

well-being.

This poses additional challenges to those that are increasingly being addressed in one

dimension, income/wages, in the literature on counterfactual distributions. This new chal-

lenge comes from the dependence between dimensions of well-beinq, which makes multidi-

mensional analysis irreducible to the analysis of unidimensional gaps. If multiple outcomes

are analyzed separately, then an important piece of information is lost, namely, whether in-

dividuals who are worse (or better) on one dimension are the same individuals who are worse

(better) on other dimensions. The presence of such association will lead to higher or lower

estimations of differences between groups than can be inferred from multiple unidimensional

analyses. For example, if women have worse wage and worse health outcome distributions

than men, and additionally, women’s wages and health are more dependent than men’s (so

that there is higher likelihood that a woman with bad health has also low income than it

is for a man with bad health), then we should conclude that there is higher gap between

men and women than we would conclude from just looking separately at the wage gap and

health gap. Or, if women still have worse wage distribution but health comparisons are

ambiguous, and in addition, men have higher correlation of wages and health for workers

with bad health, it may happen that in the range of bad health outcomes, women actually

have better joint distribution of wages and health than men. In such cases, a joint analysis

can often resolve ambiguity arising from univariate analyses. The outcomes must be consid-

ered together to get the full picture of the well-being comparisons between the groups. As

Blau (1998) notes: “First, it is important that a broad range of indicators of well-being be

employed, encompassing not only labor market outcomes like wages and occupations, but

also time available for leisure, the level of family income, the share of women who are single

family heads (...) for forming a more complete picture of changes in women’s well-being
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than may be obtained elsewhere in the literature.” This broad view has for long been ac-

knowledge in the analysis of well-being, inequality, poverty, but has not been extended to

the analysis of gaps and counterfactual effects.

The aim of this paper is to propose a theory for identification and estimation of well-

being gaps. We call them well-being gaps in line with well-being measurement literature

that proxies well-being through the use of multiple outcomes, e.g., well-known indices such

as OECD’s Better Life Index or Human Development Index. These gaps can be differences

between men and women, or any exogenuously defined groups. In accordance with the liter-

ature on counterfactual distributions and decomposition methods, we differentiate between

distributional and quantile effects. In each case, we check which of the tools known in the

literature for analyzing multidimensional distributions can be used to study these effects.

We also offer new tools and new effects of substantive policy implications. We start with a

statistically complete definition of the gap in the multidimensional framework. For quantile

effects, this is additionally problematic since, in this setting, quantiles are sets. The quantile

difference, which is very natural in the unidimensional setting, is no longer meaningful. We

propose solutions to this problem. With each tool we use to analyze gaps we check whether

it allows for the decomposition into structural and composition effects. Otherwise, this tool

might be good for studying and comparing multidimensional distributions but not very use-

ful for the analysis of type of comparisons which is of interest in the gap literature. Thus,

some of the well-known tools are excluded as unhelpful.

There are two directions for decomposition in this setting. Apart from the traditional

decomposition into structure and composition effects, we are also interested in decomposition

by dimensions of well being. In particular, we are interested in what part of the overall gap

between two groups comes from the gap in, say, wages, the gap in leisure and the gap in the

dependence between wages and leisure in both groups. Are women with lower wages also

the ones with the most free time, or vice versa? Is it the same for men or different, and if so,

to what extent? Thus, we would ask what proportion of the wage-leisure gap between men

and women is due to different patterns of dependence between wages and leisure in both

groups?1 If both forms of decomposition are possible, then we can be even more exact, and

trace the sources of the gap to the dependence differences that are structural and that are

compositional. In more detail, exact decomposition means that the gap can be decomposed

into six additive elements, namely the structural effect of the first outcome, the structural

effect of the second outcome and the structural effect of the dependence, the composition

effect of the first outcome, the composition effect of the second outcome, and the composition

effect of dependence. From this various other effects can be computed such as, for example,

overall composition effect, or overall effect of the dependence. These decomposition effects
1Dependence also often has additional interpretation in various contexts, e.g., with income and health,

dependence is the widely studied income gradient in health, or with several health indicators dependence is

understood as comorbidity, namely, the joint occurrence of diseases.
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are of great consequence for better informed policy decisions. We show when useful solutions

exist and when they do not.

As mentioned, the new framework allows for new definitions of counterfactual effects.

A counterfactual distribution results either from a change in the distribution of covariates

(keeping women’s wage structure fixed but with men’s characteristics), or from a change

in the relationship between covariates and outcome, that is, a change in the conditional

distribution of outcome given a set of characteristics (keeping women’s characteristics fixed

but giving them men’s wage structure). The latter effect is called the structural effect and the

former is called the composition effect. In a multivariate setting it is possible to define a new

counterfactual effect such that we give women access to marginal conditional distribution

of men’s outcomes, but we keep their preferences (substitution parameters) towards the

two outcomes. This is possible, because in one of the solutions that we offer, quantile

sets are modelled as a latent well-being and substitution weights can be recovered. This

technique was developed by Maasoumi and Racine (2016) and we apply it to the analysis

of gaps. Parameterization also helps to avoid the thorny problem of measuring the distance

between quantile sets. As mentioned, the quantile difference is simple with a single outcome

only. Already with two outcomes, there is a whole quantile curve associated with a given

quantile, and it is not a priori known what is meant by quantile difference. We study some

of the definitions from the mathematics literature in this respect, but they do not allow

for decomposition, and hence are not useful. Maasoumi and Racine (2016) solution offers

a way out and additionally addresses the heterogeneity challenge. The latter is an inherent

problem of any aggregation problem, namely, typically used summary measures assume

homogeneous evaluation functions across individuals and groups, which in the presence of

substantial heterogeneity (i.e., individuals differ in substitution parameters) results in great

arbitrariness of such measures. For example, to identify quantile effects, one typically has to

assume rank invariance or similarity, an assumption that women endowed counterfactually

with men’s skill set will occupy the same ranks in counterfactual and observed setting. This is

often unsupported empirically. The possibility that men and women may engage differently

in skills substitutions is ruled out. This confirms the reservations of Heckman et al. (1997)

as to the meaningfulness of quantile gaps. Applying Maasoumi and Racine (2016) methods

to the analysis of quantile gaps, we allow for different weights and substitution values at

different quantiles/groups andcheck whether heterogeneity is present.

All in all, for the analysis of multivariate distributional gaps, i.e. gaps in the values of

distribution or density functions, we propose the Tsui (1995) inequality measure, which we

show is decomposable by dimensions. Thus exact decomposition into dimensions and struc-

tural and composition effects is possible with this measure. Furthermore, the gap defined

as a difference in log probability can also be decomposed in the exact manner utilizing the

factorizing of the joint density into marginal densities and a copula density. Log probabil-
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ities are often used in computation to replace multiplication with addition of probabilities.

Similarly to reporting chosen quantiles of the gender wage gap, we may report the full de-

composition of the difference in log densities between men and women at chosen quantiles.

However, we may also summarize this information using entropy measures. The average

of log probability is known as entropy, and as we show, it is also decomposable in exact

manner. In particular, entropy of a copula is a well-known concept in information theory,

namely, mutual information. For the analysis of multivariate quantile effects, as already

mentioned, we suggest parametrization of quantiles via a latent concept of well-being which

is implemented using a CES utility function. The assumption is that individuals who belong

to the same quantile set enjoy the same level of well-being/CES utility. With this assump-

tion, at each quantile set, the parameters of the CES function can be estimated and the

difference between well-being of men and women at a given quantile can be computed. To

ensure some scale invariance, we use well-being shares rather than scores. The parameters

of CES function will potentially differ between quantile levels reflecting heterogeneity in the

aggregation of outcomes. A new counterfactual effect can be defined such that women are

assigned men’s conditional distribution of both outcomes, but they keep their substitution

parameters. Less formally speaking, this is the counterfactual effect of women having ac-

cess to men’s structure of both outcomes, but retaining their own preferences towards these

outcomes.

The estimation can be performed applying the DFL re-weighting method (DiNardo et

al. 1996) to the non-parametric estimate of the multivariate conditional distribution. We

apply the developed toolbox to the analysis of the American Time Use Survey (ATUS). The

American Time Use Survey, also known as ATUS, is a yearly study that began in 2003. It

utilizes data from the Current Population Survey to gather information on how individuals

use their time over a 24-hour period, referred to as the “diary day”. The survey allows for a

detailed understanding of the activities that respondents engage in and the amount of time

they spend on each. The survey also collects information on the respondent’s education level,

employment status, and earnings, as well as demographic information about the household.

The survey has been collecting data from 2,190 households per month, or around 26,400

households per year, since December 2003. Initially, the sample size was 3,375 households

per month, or about 40,500 households per year, but it was later decreased to cut costs. The

households selected for the survey are divided into 12 strata, based on their race/ethnicity

(e.g. Hispanic, Non-Hispanic black, Non-Hispanic non-black) and type of household (e.g.

households with children under 6, households with children between 6 and 17, single adult

households without children, households with two or more adults without children). We use

years 2005-2021, because of some variables restrictions and study wage-leisure gaps.

The paper is incomplete when it comes to empirical application of the proposed methods.

However, a few things that emerge are to note. Both the gaps measured by inequality
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measure and entropy are decreasing, for entropy the decrease happened in the first years of

2000s and then the gap remains stable. There is a more moderate decrease in the leisure

gap alone than in the wage gap, but both gaps are decreasing and as such contribute to the

decrease of the overall gap. The dependence gap, on the other hand, is increasing. It is also

negative, meaning that women exhibit less dependence between wages and leisure than men

and this difference is becoming greater in the last years. In each year, the structural effects

for all dimensions and dependence are greater than composition effects. In fact, for wages

composition effects start to become negative, meaning that women have surpassed men when

it comes to the distribution of observable characteristics. Maasoumi and Wang (2019) also

find this analysing CPS data and wages only. The results reveal substantial heterogeneity

in the substitution parameters with varying quantiles. Willingness to substitute is higher at

lower quantiles of joint wage-leisure distribution. Women have lower elasticity of substitution

between wage and leisure than men almost uniformaly, that is, at each quantile. However,

these differences were greater in 2005 than in 2021.

The paper is organized as follows. In Section 2 we review the related literature. In Section

3 we provide a theory of multidimensional distributional gaps, followed by decomposition

possibilities. In Section 4 we treat multidimensional quantile gaps. Section 5 contains

empirical application. In Section 6 we offer discussion on further work and conclude.

2 Relation to the literature

This paper builds a bridge between the literature on well-being measurement, which now

widely adopts the view that well-being is inherently a multidimensional concept (Stiglitz et

al. 2009) and the econometrics literature on group inequalities. In more detail, the paper

relates to several big areas of economics research, namely, empirical evidence on gender

gaps (Blau and Kahn 1997), wellbeing research (Deaton 2015), estimation of counterfactual

distributions and policy effects (Chernozhukov et al. 2013) and decomposition methods

(Fortin et al. 2011).

The distribution of wages in the US has evolved differently for men and women over sev-

eral decades. Using conventional gap measures as the mean and quantiles, economists have

shown that the gender gap has decreased over time, especially in the 1980s and early 1990s.

This trend has slowed down since the mid-1990s. Women are catching up with men (Blau

and Kahn 1997, Goldin 2014). The quantile gaps, however, have evolved differently over the

past decades (Albrecht et al. 2003). The measurement of the gap is filled with problems of

heterogeneity and selection. In the presence of significant heterogeneity, all gap measures are

biased. Rank invariance assumption, namely, that agents occupy a given quantile in both

factual and counterfactual setting, does not hold. Men and women, when endowed with

each other’s skill set or market returns, may engage differently in skills substitutions, work

and job decisions. Gap measures are biased also when there is selection into employment.
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That is, if non-working men and women systematically differ from working men and women,

measures of the gap would be biased. For example, if only high-earning women enter labor

market we may observe convergence in the gap with no actual progress. There are only few

attempts in the gender gap literature that account for selection (Blau and Kahn 2006, Mul-

ligan and Rubinstein 2008). Recently, Maasoumi and Wang (2019) examine the gap using

General Entropy measures which overcomes the problem of heterogeneity. These are anony-

mous aggregative measures of the gap. They also use the novel copula approach developed

by Arellano and Bonhomme (2017) to model selection. Once selection is accounted for, the

gap converges slower than without selection and in fact the trend reverses in some parts of

the distribution between mid-1990s and the most recent recession. In the great recession,

there was a marked decline in the gap among low-skilled workers, perhaps due to a relative

deterioration in wages of the low-skilled males. Convergence is much smaller amongst the

least educated or black women, especially during the recent years.

Economists have for long acknowledged that improvements in well-being are not confined

to economic growth (Sen 1973). Governments (for example in UK, France, Canada, Japan)

and international organizations have been increasingly responding to economists’ calls to

go beyond GDP in measuring nations’ progress. Measuring well-being is now a prominent

item on the agenda of many statistical offices. There is a wide spread recognition that

well-being measurement is critical for informing policy making about areas that matter to

people. Specific measures taken in the last decade include the construction of the OECD’s

Better Life Index, the report by Stiglitz-Sen-Fitoussi commission on the measurement of

economic performance and social progress, the program initiated by the British Office for

National Statistics on measuring nation’s well-being or the 2011 resolution of the United

Nations General Assembly (No. 65/309) which explicitly “invites Member States to purse

elaboration of additional measures that better capture the importance of the pursuit of

happiness and well-being” than GDP-based indicators.

Gender gap is an important source of well-being inequalities in the population. On

one hand, women live longer than men on average and they are often more educated. On

the other hand, they report a lower health status, have worse job prospects and fewer

professional networks. Furthermore, various gaps are interrelated. In the context of our

empirical application, gender gaps in time allocation produce gender inequalities in work

experience and earnings. Research has shown (Aguiar and Hurst 2007, Aliaga 2006, Fisher

and Robinson 2011, Gimenez-Nadal and Sevilla 2012, Gimenez-Nadal and Molina 2020)

that women tend to spend more time on household tasks, such as cooking, cleaning, and

caring for others, compared to men. These patterns of specialization, with women devoting

more of their time to household production, may be detrimental for their labour market

opportunities. In a recent article, (Campaña et al. 2023) write: “The overall picture is that

the bulk of unpaid work is still performed by women. The gender difference in unpaid work is
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larger than the gender difference in labour market work, reflected in the allocation of leisure

time by gender, indicating that men spend slightly more time on leisure than do women.

(...) the results show that the gender gap in both paid and unpaid work has decreased in

most countries, leading to a more egalitarian gender distribution of leisure time. However,

these gender gaps are still significant (...).” It thus seems natural to think about well-being

differences and not just wage differences when comparing groups (men and women, black

and white, and other groups). This justifies the types of problems tackled in this paper.

This broad view of the gap requires developing the theory and estimation procedures for

measuring it. This problem has not been considered so far in econometrics literature, which

constitutes the pioneering nature of the paper.

Since the gaps considered in the paper are multidimensional we briefly describe the state

of art and issues present in multidimensional aggregation. Aggregation is a key challenge

in the multi-outcome setting. The classic problem of aggregation over agents (as in any

inequality analysis) is compounded by an inevitable aggregation over outcome indicators.

Aggreation over individuals is subject to Arrow’s impossibility, and aggregation over out-

comes requires empirically valid weights and substitution values. The latter are not readily

available since many outcomes may not even be priced through markets. Due to inevitable

subjectivity of aggregation rules (associated to ANY scalar measure), researchers have exam-

ined uniform (partial) ranking i.e. stochastic dominance criteria. In the multidimensioned

context, this approach was first illucidated by Atkinson and Bourguignon (1982). In the SD

setting, ranking of outcomes is over classes of welfare functions and outcome aggregators.

The conditions for rankings are, however, restrictive. The problem of heterogeneity is signif-

icant i.e. groups with different needs cannot be represented with identical utility functions.

On the other hand, certain plausible assumptions about the trade-offs between incomes and

other variables, such as health or other “needs” (and if groups can be ranked with respect

to “needs”), allow partial comparability (Atkinson and Bourguignon 1987). However, Maa-

soumi’s and Racine’s (2016) example based on Indonesian data suggests that heterogeneity

is so high that the above assumptions seem generally implausible. Consequently, they do

not find many findings of statistically significant multidimensional rankings.2

As a solution they propose the following procedure. They follow the two step approach of

Maasoumi (1986) in which outcome aggregation is a transparent first step, producing an ag-

gregate “index” of well being, followed by measures based on the distribution of the aggregate

index. Next, they offer a nonparametric data-dependent method to recover substitution and

weights values required for an aggregator index.3 Such index based evaluation functions (ag-
2This has major implications for all summary measures of inequality, poverty, or equivalence scales,

which all make assumptions about relatively homogeneous evaluation functions across individuals and even

groups. Robust analysis may have to avoid summary measures as the assumptions they employ seem to be

empirically unsupported.
3Another data-dependent method is given in Maasoumi and Tong (2015) who find estimates of a happiness
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gregators) provide for complete multidimensional ranking of welfare states. Their solution

stems from the insight that non-parametrically estimated joint distribution of outcomes con-

tains information in the purest form, free from arbitrary assumptions. Non-parametrically

estimated quantile sets are iso-quants of well-being states. They choose a particular aggre-

gator, namely, generalized entropy measure that has the advantage that it minimizes the

divergence between the joint distribution and the distribution of its constituent dimensions.

The CES aggregation is a member of this class. Mapping the non-parametric joint dis-

tribution, possibly conditional on other characteristics, to the chosen aggregator functions

provides estimates for weights and substitution parameters. In what follows, we use their

approach to study multidimensional quantile gaps.

3 Distribution effects

The basic framework with which we work follows Chernozhukov et al. (2013) modified to

the case of two outcomes.4 Let us suppose that we have two populations, of men (denoted

0) and women (denoted 1). For each population k = 0, 1, there is a random dx-vector Xk of

covariates and a random outcome dy-vector Yk, where for now we assume dy = 2. We denote

the support ofXk by Xk ⊆ Rdx and denote the region of interest for outcomes Yk by Yk ⊆ R2.

The conditional distribution functions FY0|X0
(y|x) and FY1|X1

(y|x) describe the stochastic

assignment of wages to workers with characteristics x, for men and women, respectively.

Let f0|0 and f1|1 represent the observed distribution function of wages for men and women,

and let f0|1 represent the counterfactual distribution of wages that would have prevailed

for women had they faced the men’s wage schedule FY0|X0
. Further, f10|0, f

1
1|1, f

1
0|1 and

f20|0, f
2
1|1, f

2
0|1 denote, respectively, the first and the second marginal of the three distributions

of interest.

Definition 1. The counterfactual distribution F0|1 is defined as

F0|1(y) :=

ˆ
X1

FY0|X0
(y|x)dFX1(x), y ∈ Y0 (1)

Such integral is well-defined if the support condition holds if X0, the support of char-

acteristics for men, includes X1, the support of women’s charactertistics, namely, X1 ⊆ X0.

This distribution is called counterfactual because it does not arise as a distribution from any

observable population. Rather, it is constructed by integrating the conditional distribution

of both outcomes for men with respect to the distribution of characteristics for women.

The definition of the distributional gap is simply F1|1 − F0|0. This difference can be

decomposed in the spirit of Oaxaca (1973) and Blinder (1973), which as already mentioned,

we call “decomposition by sources”.

index in China and show that incorporating substitution among attributes, and taking into consideration

group heterogeneity are very important in multidimensional analysis of well-being.
4The extension to several outcomes is straightforward in this setting and we comment on it in Section 6.
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Definition 2. The decomposition by sources of the distributional gap is the following

F1|1 − F0|0 =
(
F1|1 − F0|1

)︸ ︷︷ ︸
Structural effect

+
(
F0|1 − F0|0

)︸ ︷︷ ︸
Composition effect

. (2)

The difference F1|1 − F0|0 is the overall effect i.e. the gap, and the two effects on the

right-hand side of the equation are called counterfactual effects (CE). The first term in

brackets is due to differences in the wage structure and is called the structural effect. The

second term is the composition effect that arises due to differences in characteristics between

men and women. These counterfactual effects are well defined econometric objects and are

widely used in empirical analysis. For example, the structural effect is a measure of gender

discrimination. It is important to note that these effects do not necessarily have a causal

interpretation without additional conditions. In particular, the assumption of conditional

exogeneity, selection on observables or unconfoundedness is often invoked to interpret CE

as casual effects. This can be separated from the measurement methods applied separately

as explained in Chernozhukov et al. (2013).

The definition of the multivariate distributional gap shows consistency in a sense that it

relates naturally to the univariate gaps.

Proposition 1. F 1
0|1 = FY1<0|1 and F0|1>2 = FY2<0|1

Proof.

F0|1>1(y1) =

ˆ
suppY0|0>2

f0|1(y1, y2)dy2 =
ˆ

suppY0|0>2

ˆ
suppX1

FY0|X0
(y1, y2|x)dxdy2 =

=

ˆ
suppX1

ˆ
suppY0|0>2

FY0|X0
(y1, y2|x)dy2dx =

ˆ
suppX1

FY01|X0
(y1|x)dx =

=FY1<0|1

Proposition 1 states that the cumulative counterfactual distribution of Y1 (and of Y2) is

the marginal cdf of the joint counterfactual distribution of Y1, Y2. That is, the construction of

counterfactual marginal distribution can be recovered from counterfactual joint distribution

by taking its marginals.

To sum up, the distributional effects, definitions and decomposition by sources are the

same as in the univariate setting. However, they are rarely reported as such, but ultimately

the decomposition results are quantified using some distributional statistic such as, for exam-

ple, an inequality measure. We will now show how this extends to the multivariate setting.

In particular, we will inspect how the multivariate gap can be analyzed using well-known

tools for dealing with multivariate distributions and examine the key role of dependence

between outcomes (i.e. “decomposition by outcomes”). In what follows, we use F to denote

joint cumulative distribution function, and F1, F2 to denote its marginals.
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3.1 Multivariate inequality measures

Although distribution effects can be easily defined, the decomposition results are ultimately

quantified using some distributional statistic ν such as, for example, an inequality measure.

In our setting these will be multivariate inequality measures, that is, measures that mea-

sure inequality in multiple outcomes and not just income. The definition of the gap using

distributional statistic is simply ν(f1|1)− ν(f0|0) and its decomposition is the following,

Definition 3. The decomposition of the gap into structural and composition effects using

distributional statistic is the following

ν(f1|1)− ν(f0|0) =
(
ν(f1|1)− ν(f0|1)

)
+
(
ν(f0|1)− ν(f0|0)

)
. (3)

Now ν can be any multivariate inequality measure. However, because our goal is to

also be able to distinguish the impact of outcomes’ dependence on the overall gap, we will

use the measure that can be decomposed in such a way that dependence can be isolated

from the impact of marginal distributions. This way of decomposing the measure is known

as attribute decomposition and was introduced into inequality measurement literature in a

paper by Abul Naga and Geoffard (2006).5

Definition 4. Let I denote the multivariate inequality measure and I1, I2 denote univariate

inequality measures. I is attribute decomposable if and only if

I(F ) = g1(I1(F
1) + g2(I2(F

2)) + g3(κ(F )),

where g1, g2, g3 are increasing functions and κ is a measure of association between Y1, Y2

with joint cdf F .

We will consider the following measure, which (slightly abusing notation) we also denote

I.

I(F ) = 1−
(ˆ

yr11 y
r2
2

ȳr11 ȳ
r2
2

dF (y1, y2)
) 1

r1+r2

, (4)

where ȳ2, ȳ2 denotes the mean of Y1, Y2, respectively, and r1, r2 are dimensional weights.

This measure is a simple multidimensional generalization of the Atkinson (1970) measure

derived by Tsui (1995). Therefore, rq = 1− ϵq, where ϵq is the degrees of inequality aversion

in outcome q. As ϵq rises, more weight is attached to inequality-reducing transfers at the

bottom of the distribution than at the top. In his seminal work, Atkinson (1970) arbitrarily

set the inequality aversion parameter equal to 1, 1.5 or 2. Subsequently, empirical research

has tried to infer plausible values of ϵq from tax schedules (Aristei and Perugini, 2016;

Gouveia and Strauss, 1994; Young, 1990). These estimates also range between 1 and 2

depending on the country and time period.
5Although attribute decomposition is a desirable property of multivariate measures, it is technically

difficult and there are not many general results concerning this form of decomposition; see e.g. Kobus

(2012).
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Abul Naga and Geoffard (2006) provide the decomposition of Tsui (1995) measure into

attributes and a residual term that captures the effect of attributes’ dependence in a discrete

setting. Here we reformulate this result in a continuous setting and then apply linearization

to obtain additive decomposition.

Proposition 2. I is attribute decomposable as follows

I(F ) =
r1

r1 + r2
I1 +

r2
r1 + r2

I2 +
1

r1 + r2
(1− κ) +R, (5)

where

1−
(ˆ

yr11
ȳr11

dF1(y1

) 1
r1

unidimensional index I1

1−
(ˆ

yr22
ȳr22

dF2(y2

) 1
r2

unidimensional index I2
´
yr11 y

r2
2 dF (y1, y2)´

yr11 dF1(y1)
´
yr22 dF2(y2)

measure of association κ

R approximation residual.

Proof. Please see the Appendix.

Proposition 2 states that Tsui (1995) measure is attribute decomposable and provides the

exact decomposition into I1, I2, Atkinson’s (1970) unidimensional indices of inequality, and

a measure of association κ. The precise decomposition6 is not additive, but multiplicative

I(F ) = 1− (1− I1)
r1

r1+r2 (1− I2)
r2

r1+r2 (κ)
1

r1+r2 .

Applying linear decomposition around the point of perfect equality (i.e. I1 = I2 = 0, κ = 1)

gives (5) and R is a residual from this approximation.

Let us now shed more light on κ. Abul Naga and Geoffard (2006) show that it increases

following correlation-increasing switch. This is a transformation that puts probability mass

on the diagonal, hence increases correlation between two variables. A reasonable measure

of association should react positively to this transfer and so does κ. Furthermore, it can be

seen easily that κ = 1 +
Cov(Y r1

1 ,Y
r2
2 )

EY r1
1 EY r2

2

. That is, κ is a function of covariance normalized by

EY r1
1 EY r2

2 . Therefore, Cov (Y r1
1 , Y r2

2 ) = 0 ⇐⇒ κ = 1. For uncorrelated variables, κ equals 1.

Therefore, in a bidimensional model, κ = 1 together with unidimensional inequalities equal

to zero (i.e. I1 = I2 = 0) represent the case of perfectly equal distribution. Furthermore, for

positive variables, we also have that Cov (Y r1
1 , Y r2

2 ) < 0 ⇐⇒ κ < 1 (negatively dependent

variables) and Cov (Y r1
1 , Y r2

2 ) > 0 ⇐⇒ κ > 1 (positively dependent variables).

With this decomposition, we can now study the role of dependence in the overall gap.

Coming back to our original setting with observed and counterfactual distribution, we can

further decompose (3).
6Please refer to the Appendix.
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Proposition 3. The gap I(f1|1)− I(f0|0) can be decomposed as follows

I(f1|1)− I(f0|0) =
r1

r1 + r2

(
I1(f

1
1|1)− I1(f

1
0|1)
)

structural effect for outcome 1

+
r2

r1 + r2

(
I2(f

2
1|1)− I2(f

2
0|1)
)

structural effect for outcome 2

+
1

r1 + r2

(
κ(f1|1)− κ(f0|1)

)
structural effect for dependence

+
r1

r1 + r2

(
I1(f

1
0|1)− I1(f

1
0|0)
)

composition effect for outcome 1

+
r2

r1 + r2

(
I2(f

2
0|1)− I2(f

2
0|0)
)

composition effect for outcome 2

+
1

r1 + r2

(
κ(f0|1)− κ(f0|0)

)
composition effect for dependence

+R residual from linear approximation

Given Proposition 3 we can compute the overall effect of dependence and also spe-

cific effects (i.e. structural and composition) in the gap. For example, (κ(f1|1)−κ(f0|1))
I(f1|1)−I(f0|0)

is

the proportion of the gap attributed to the structural effect of dependence; (κ(f0|1)−κ(f0|0))
I(f1|1)−I(f0|0)

is the proportion of the gap attributed to the composition effect of dependence; finally,
(κ(f1|1)−κ(f0|1))+(κ(f0|1)−κ(f0|0))

I(f1|1)−I(f0|0)
is the proportion of the gap that is attributed overall to de-

pendence. Similar effects can be computed for marginal distributions.

To sum up, using well-known multivariate measure of inequality such as (4), the gap in

multiple outcomes can be easily analyzed. Furthermore, full decomposition that separates

dependence from marginal distributions is possible. However, as noted by DiNardo et al.

(1996), although using inequality measures for the measurement of the gap is very common,

there is a drawback. Such measures provide little information on the different shapes of two

distributions as they are defined for a given distribution. This issue is better addressed by

divergence measures that take directly into account distributional differences.

3.2 Divergence measures

The most well-known divergence measure is the so called the Kullback-Leibler difference

between two densities f and f̃

KL(f, f̃) =

ˆ [
f(y)− f̃(y)

]
ln
f(y)

f̃(y)
dy

Please note that in this definition y can be multivariate. This measure, however, is not

decomposable.

Proposition 4. KL divergence measure is not decomposable into structural and composition

effects.
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Proof. We have(ˆ [
f1|1(y)− f0|1(y)

]
ln
f1|1(y)

f0|1(y)
dy
)
+

(ˆ [
f0|1(y)− f0|0(y)

]
ln
f0|1(y)

f0|0(y)
dy
)

=

ˆ
f1|1(y) ln

f1|1(y)

f0|1(y)
− f0|1(y) ln

f1|1(y)

f0|1(y)
dy+

ˆ
f0|1(y) ln

f0|1(y)

f0|0(y)
− f0|0(y) ln

f0|1(y)

f0|0(y)
dy ̸=

ˆ
f1|1(y) ln

f1|1(y)

f0|0(y)
− f0|0(y) ln

f1|1(y)

f0|0(y)
dy = KL(f1|1, f0|0).

Kullback-Leibler is a member of k-class entropy distance measures

Ik(f1|1, f0|0) =
1

k − 1

(ˆ fk1|1

fk0|0
df0|0 − 1

)
,

such that limk→∞ Ik = I1, where I1 is KL. It is evident that the same reasoning as in the

proof of Proposition 4 will apply to the whole class. In fact, below we give a general result

concerning decomposition of such measures. Let us first define what is the general form of

decomposition for such measures.

Definition 5. The decomposition of the gap into structural and composition effects using

divergence statistics is the following

ρ(f1|1, f0|0) = ρ(f1|1, f0|1) + ρ(f0|1, f0|0). (6)

Please note that (6) is different from (3): ν is a functional of one distributions, whereas ρ

is a functional of two distributions. Consequently, while the decomposition using ν obtains

trivially, the decomposition using ρ holds only under a restrictive condition as Proposition

5 shows.

Proposition 5. ρ is decomposable in the form (6) if and only if ρ(f1|1, f0|0) = g(f1|1) −
g(f0|0), where g is some function.

Proof. (6) is known as Sincov’s functional equation (Marshall and Olkin 1979, p. 223) and

as such has the solution described in Proposition 5 without any further assumptions.

Additionally, if the decomposition takes a more specific but still very general form

ψ(f1|1 − f0|0) = ψ(f1|1 − f0|1) + ψ(f0|1 − f0|0), (7)

then ψ is a linear function (of then one variable).
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Proposition 6. ψ is decomposable in the form (7) if and only if ψ(t) = at, where a is some

constant.

Proof. Let u = f1|1 − f0|1 and v = f0|1 − f0|0, then ψ(u) + ψ(t) = ψ(u + v), which is the

well-known Cauchy functional equation that has solution ψ(t) = at for some constant a.

We can see from Propositions 5 and 6 that the restrictions on the form of decomposition

using two distributions are very restrictive. In order for the divergence measure to be

decomposable into structural and composition effects it needs to be a simple difference of

distributions evaluated by g, and in case the decomposition is specifically the decomposition

of the difference in distributions it needs to be a linear function. The widely used entropy

divergence measures such as members of k-class are not of these forms.

3.3 The exact decomposition of the distribution

We showed in Section 3.1. that a concrete family of measures (4) can be decomposed in a

way that distinguishes the role of marginal distributions from the role of their association.

Clearly, not every family of functions can be decomposed in this way. In this section, we

study such decompositions more generally, namely, working directly with the decomposition

of the distribution itself.

To this end, we utilize a famous result by Sklar (1959) who asserts that there exists

a copula function such that the joint cdf can be written as F (y1, y2) = C(F1(y1), F2(y2)).

C : [0, 1]2 7→ [0, 1] is the so called copula function. It can be regarded too as the joint

cdf of two variables u and v that have standard uniform distribution. That is, u = F1(y1)

and v = F2(y2) so that (u, v) can always be found. Copula density c is thus the density of

the uniform random vector, c(u, v) = ∂2

∂u∂vC(u, v). Given Sklar’s result, we get f(y1, y2) =

c(f1, f2)f1(y1)f2(y2). Thus we can write the following comparison of our distributions of

interest
f1|1

f0|0
=
c1|1

c0|0

f11|1

f10|0

f21|1

f20|0
. (8)

Using logarithm, we are back to the additive gap, which now takes the form ln f1|1 − ln f0|0.

This gap can of course be decomposed.

Definition 6. The decomposition of the gap into structural and composition effects using

log density is the following

ln f1|1 − ln f0|0 =
(
ln f1|1 − ln f0|1

)
+
(
ln f0|1 − ln f0|0

)
. (9)

The use of log density instead of density means representing probabilities on a loga-

rithmic scale rather than on a standard unit interval. Log probabilities are used in many

applications, such as natural language processing and machine learning, because they can

make calculations involving very small numbers more stable and efficient. In particular, the
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logarithm of a probability can be used to transform the product of many probability values

(such as the likelihood of a sequence of events) into the sum of their logarithms. This can

be more computationally stable because the logarithm function "compresses" large numbers

and "stretches out" small numbers, making it less likely to encounter underflow or overflow

errors. The use of log probabilities is very common e.g., in statistical physics, where it is

quite natural to switch back and forth between quantities proportional to log probabilities

(energy, entropy, enthalpy, free energy) and quantities proportional to probability (number

of microstates, partition function, density of states).

Altogether, we have the following result concerning the gap in log probabilities.

Proposition 7. The gap ln f1|1 − ln f0|0 can be decomposed as follows

ln f1|1 − ln f0|0 =

=
(
ln f11|1 − ln f10|1

)
structural effect for outcome 1

+
(
ln f21|1 − ln f20|1

)
structural effect for outcome 1

+
(
ln c1|1 − ln c0|1

)
structural effect for dependence

+
(
ln f10|1 − ln f10|0

)
composition effect for outcome 1

+
(
ln f20|1 − ln f20|0

)
composition effect for outcome 2

+
(
ln c0|1 − ln c0|0

)
composition effect for dependence

Proof. Coming back to (8) and taking log, we can see that the gap can be decomposed by

attributes, namely

ln f1|1 − ln f0|0 =
(
ln f11|1 − ln f10|0

)
+
(
ln f21|1 − ln f20|0

)
+
(
ln c1|1 − ln c0|0

)
.

The rest follows from (9).

Thus utilizing results from copula theory applied to densities, the exact decomposition

using both forms of decomposition into counterfactual effects and into marginals and de-

pendence, can be obtained. Applying this result to the data, the decomposition of the

probability mass concentrated at some interesting points (e.g. at quartiles or at the median)

of the distribution can be reported. Alternatively, we could present a summary statistics by

taking the average of log probabilities. This is known as famous Shannon’s (1948) entropy

which for continuous distributions is called differential entropy

S(f) =

ˆ
ln(f(x, y))f(x, y)dxdy.

We can also write entropy of marginal distributions f1, f2 and of copula density c thus

arriving at the following representation (Calsaverini and Vicente 2009)
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S(f) = S(f1) + S(f2) + S(c), (10)

where

S(c) =

ˆ
[0,1]2

f(y1, y2) ln

(
f(y1, y2)

f1(y1)f2(y2)

)
dy1dy2 (11)

is the so-called copula entropy known also as mutual information. This is a very well-

known concept in information theory. Mutual information is a measure of the amount of

information that one random variable contains about another. It quantifies the amount of

reduction in uncertainty about one variable given knowledge of the other variable. In other

words, it measures the amount of dependence between two random variables, hence is can

be expressed in the language of copulas. The mutual information is always non-negative

and it is equal to zero if and only if the two variables are independent. Using entropy we

can define the gap S
(
f1|1
)
− S

(
f0|0
)
.

Proposition 8. The gap S
(
f1|1
)
− S

(
f0|0
)

can be decomposed as follows

S
(
f1|1
)
− S

(
f0|0
)
=

= S
(
f11|1

)
− S

(
f10|1

)
structural effect for outcome 1

+S
(
f21|1

)
− S

(
f20|1

)
structural effect for outcome 1

+S
(
c1|1
)
− S

(
c0|1
)

structural effect for dependence

+S
(
f10|1

)
− S

(
f10|0

)
composition effect for outcome 1

+S
(
f20|1

)
− S

(
f20|0

)
composition effect for outcome 2

+S
(
c0|1
)
− S

(
c0|0
)

composition effect for dependence

Proof. It follows from (10).

Let us give an example for Gaussian distributions, that is, let us assume that all distri-

butions, i.e., men’s, women’s and counterfactual distribution, are normal distributions with

their respective set of parameters. As it is known a bivariate normal distribution can be

constructed by plugging in marginal Gaussian distributions Φ(x) =
´ x
−∞

1√
2π
e−

1
2
u2

du into

the Gaussian copula defined as

C(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
,

where Φρ(x, y) =
´ x
−∞
´ y
−∞

1√
4π2(1−ρ2)

e
−u2+v2−2uvρ

2(1−ρ2) dudv and ρ is a dependence parameter.

The expressions for the logarithm of densities are the following:

log f(x) = −1

2
log(2πσ2)− (x− µ)2

2σ2
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for the marginal distributions,

log f(x, y) = −1

2
log(2π)− log(σx)− log(σy)−

1

2
log(1− ρ2)−

1

2(1− ρ2)

(
(x− µx)

2

σ2x
+

(y − µy)
2

σ2y
− 2ρ(x− µx)(y − µy)

σxσy

)
for bivariate distributions, and finally

log c(u, v) = −1

2
log(2π)− 1

2
log(1− ρ2)− 1

2(1− ρ2)
[Φ̃−1(u)2 − 2ρΦ̃−1(u)Φ̃−1(v) + Φ̃−1(v)2]

for copula density, where Φ̃−1 is the inverse of the standard normal CDF. Using these

expressions we can perform analytically decomposition prescribed in Proposition 7.

We can do the same for the entropy decomposition. The expressions for the entropy are

the following:

S(f) =
1

2
log(2πeσ2)

for the entropy of the marginal normal distribution,

S(f) =
1

2
log(2πeσ21σ

2
2(1− ρ2))

for the entropy of the joint normal distribution, and

S(c) =
1

2
log(1− ρ2)

for the copula entropy or mutual information. Using these expressions we can perform

decomposition prescribed in Proposition 8. One thing to note: in our case, since both

marginals and copula are Gaussian, ρ is measured by the standard linear correlation coeffi-

cient. Then, S(c) gives minimal mutual information contained in the dependence between

variables. If marginals are non-Gaussian, then linear correlation estimate will underestimate

dependence parameter ρ and information excess will appear: estimated mutual information

will be higher than 1
2 log(1 − ρ2). Thus this easily computable estimate can serve as a

detection tool for non-Gaussian dependencies in the data and together with some marginal-

invariant dependence measure such as e.g. Kendall’s tau, can be used to identify the proper

copula to represent these dependencies. This method of finding the best fit distribution and

copula, namely, via entropy decomposition and information content matching, is equivalent

to the usual maximum likelihood methods (Fernandez 2008).

3.4 The case of ordinal outcomes

Some of the methods presented so far are best suited for cardinal ratio-scale variables. On the

other hand, dimensions of well-being are often ordinal indicators, such as for example, self-

reported health status, or educational attainment, or socioeconomic status, or occupational

class, and many others. Then the well-known scaling problems arise (see e.g. Allison and
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Foster 2004). Inequality measures such as (4) cannot be used as there is no natural scale

that could be assigned to y1, y2. Neither would quantile parametrization work and there

would also be problems with factorization of joint probability mass function into marginal

probability and copula, because discrete copulas are not unique (Kobus and Kurek 2018).

Taking into account these problems, we turn to the literature on inequality measurement for

multivariate ordinal data to provide tools that can be further utilized to measure the gap.

The literature is scarce at the moment, but Kobus and Kurek (2023) offer some solutions.

They propose dominance ordering and measures that are sensitive to increased spread and

bipolarity of the multidimensional ordinal variable, which are two properties necessary for

the measurement of inequality in multidimensional ordinal data. Their proposed dominance

relation states that a given distribution is ‘more unequal than the other if it has greater

partial sums of its cumulative distribution function below the multidimensional median

and greater partial sums of its survival function above the multidimensional median. They

develop a simple inequality measure based on this relation and show that this measure fulfills

desired properties:

Pa,b(P,m) =
Σi≺maiP(i) + Σi⪰mbiP̄(i)

C

where ai = aΠk
j=1(nj − mj + ij), bi = bΠk

j=1(nj + mj − ij), C = a
2Σi≺mΠk

j=1(nj − mj +

ij) +
b
2(Σm⪯i≺nΠ

k
j=1(nj +mj − ij)− 1). P, P̄ denote the values of, respectively, cumulative

distribution function and survival function. Parameters a, b allow for differential treatment

of inequality below and above the median, i.e., if a > b, then more weight is attached to

inequality in the lower tail of the distribution and the reverse holds for a < b. Weights ai
attached to categories below the median are increasing and above the median weights bi are

decreasing to ensure consistency with the proposed dominance ordering. Both weights and

the denominator C have been chosen to ensure that the index is normalized between [0,1].7

As an additive measure Pa,b allows for the decomposition by sources:

Pa,b(P1|1)− Pa,b(P0|0) =
(
Pa,b(P1|1)− Pa,b(P0|1)

)
+
(
Pa,b(P0|1)− Pa,b(P0|0)

)
.

The decomposition is not hundred percent formally correct, because we omitted the depen-

dence of P on m, the multidimensional median, and this would potentially be problematic

if the median differ between observed and counterfactual distributions. However, Kobus

and Kurek (2023) develop methods to precisely deal with this problem and that allow for

comparisons of distributions with potentially different medians. Thus, measuring gaps in

multivariate ordinal variables can be performed by utilizing their results rather than choos-

ing arbitrary cardinalization of ordinal indicators. The shortcoming is that there is lack of

attribute decomposability; this remains an open problem for ordinal measures.
7Parameters ai and bi are easy to interpret; they are a multiplication of dimensional weights that would

hold on each dimension if there was only a single dimension.
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4 Quantile effects

As already mentioned, gaps are typically reported using some distributional statistic or as

differences between quantiles. We will now turn to the latter and analyze quantile gaps in

a multivariate setting.

First we need to define counterfactual effects in terms of related quantiles. In a uni-

dimensional setting, with distribution treatment effects, we say that the probability that

women earn x income is higher by dτ had they had the distribution of men’s characteristics.

With quantile treatment effects, we say that with probability τ women earn x more income

had they had the distribution of men’s characteristics. The definition of the counterfactual

quantile is the same for both univariate and multivariate settings.

Definition 7. The counterfactual quantile is defined as

Q0|1(τ) = F−1
Y0|X1

(τ) = {y ∈ Y0 : FY0|X1
(y) < τ}, τ ∈ (0, 1) (12)

The counterfactual effect is then Q1|1(τ) − Q0|1(τ), but given that in R2 quantiles are

not numbers but sets, this difference is in fact the difference between two sets and as such

is not meaningful. With quantiles, when going from unidimensional to multidimensional

setting there are problems already at the level of the very definition of the gap. We propose

two solutions to this problem. The first solution is to find a reasonable representative of the

quantile set that also has other properties e.g. decomposition. The second solution is the

parametrisation of quantile sets. This is the approach developed by Maasoumi and Racine

(2016) to study multidimensional well-being, which we utilize for multidimensional gaps.

4.1 Distance between quantile isoquants

In the mathematics literature there are definitions of the difference between two subsets of

a metric space. The most well-known is the Hausdorff distance metric which is the greatest

of all the distances from a point in one set to the closest point in the other set. It is a proper

metric and as such it will not be decomposable into structural and composition effect. The

triangle inequality which it fulfils as a metric requires that the distance between one quantile

curve and the other is not necessarily equal but it can be less than the distance that takes

into account also the counterfactual quantile curve. Thus, we propose the following simple

alternative, namely, the representative of a given quantile isoquant will be the vector of

means.: the mean value of the first and the mean value of the second outcome for a given

quantile. We call a gap defined using those means as the mean difference quantile gap. For

a given τ , let us define intermediate notions such as Q1(y2) = y1 and Q2(y1) = y2, which

denote the quantile as a function of one dimension that for a given value of this dimension

returns the value of the second dimension.8 Now, the the gap can be defined as follows.
8Here we implicitely assume that the quantile curve is a bijection. If it is not, then it can be defined

using infimum how the value of y1(y2) is chosen, but we will not delve deeper into those technical details.
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Definition 8. The mean difference quantile gap is defined as

∆1(QY1|1 , QY0|0)(τ) =

´
Q1,Y1|1(y2)−Q1,Y0|0(y2)dy2
yMAX
2 (τ)− yMIN

2 (τ)

∆2(QY1|1 , QY0|0)(τ) =

´
Q2,Y1|1(y1)−Q2,Y0|0(y1)dy1
yMAX
1 (τ)− yMIN

1 (τ)

(13)

Although the definition may seem technical because of the difficulty of having quantiles

as sets, it is a very simple concept. For a given value of τ , we summarize the whole quantile

set by the mean of the first and the mean of the second dimension. For example, let τ = 0.2.

The quantile isoquant for this value of τ is summarized by mean life expectancy and mean

income, if these are our outcomes.9

Proposition 9. The mean difference quantile gap is decomposable into structural and com-

position effects.

Proof. We have

∆1(QY1|1 , QY0|0)(τ) = ´
Q1,Y1|1(y2)−Q1,Y0|0(y2)dy2
yMAX
2 (τ)− yMIN

2 (τ)
=

´
Q1,Y1|1(y2)−Q1,Y0|1(y2) +Q1,Y0|1(y2)−Q1,Y0|0(y2)dy2

yMAX
2 (τ)− yMIN

2 (τ)
=

´
Q1,Y1|1(y2)−Q1,Y0|1(y2)dy2
yMAX
2 (τ)− yMIN

2 (τ)
+

´
Q1,Y0|1(y2)−Q1,Y0|0(y2)dy2
yMAX
2 (τ)− yMIN

2 (τ)
=

= ∆1(QY1|1 , QY0|1)(τ) + ∆1(QY0|1 , QY0|0)(τ)

and the same for ∆2(QY1|1 , QY0|0)(τ).

Please note that we use the same denominator yMAX
2 (τ)− yMIN

2 (τ) for all three curves,

namely, for QY1|1(τ), QY0|0(τ) and QY0|1(τ). In practice, with real world data, the range

of y2 for these three distributions may be different. In this case, we choose the maximum

yMAX
2 (τ)−yMIN

2 (τ). Furthermore, please note that yMAX
2 (τ)−yMIN

2 (τ) changes with each

τ . It could be easier to just choose one global interval yMAX
2 − yMIN

2 that is the same

for every τ , however, if these values vary substantially, we may not reflect the true mean

difference for a given τ , therefore we choose to have yMAX
2 − yMIN

2 as a function of τ .

Although we found the definition of the distance between two quantile sets that can be

decomposed into structural and composition effect, it is not possible to fully separate out

dependence. There is still dependence in the vector of means that summarize each quantile

set, however, we neglected large part of dependence by averaging out the quantile sets. This

section is more to show that because in our framework are more complicated objects than in
9Given the data, yMAX1(y

MAX2) always exist (and similarly for MIN). In theory, they may not exist,

however, the assumption of the bounded support of the cdf ensures that they do.
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the unidimensional framework, there is no easy way to redefine their difference and preserve

the properties that are necessary for the exercise that we have.

4.2 Parametrization of quantile isoquants

Quantile sets can be aggregated by an aggregation function that expresses the latent con-

cept of well-being. The fundamental problem is then to obtain credible weights of such

aggregation functions. We follow Maasoumi and Racine (2016) who fit a desired parametric

form to non-parametric estimates of such iso-quants and discover the unknown substitution

parameters. Multidimensional quantiles are equi-probable surfaces that correspond to the

values of aggregation functions, parameters of which we seek to discover. Their proposed

aggregation functions were first derived in Maasoumi (1986) as ideal aggregators in the sense

of minimising the divergence between its distribution and the distribution of its constituent

components. Without loss of generality, for two outcomes, the CES aggregation function is

given by

S(y1, y2) = A(αy−β
1 + (1− α)y−β

2 )
−1
β

where A > 0 and 0 < α < 1. The partial derivatives are as follows,

Sy1 =
∂S(y1, y2)

∂y1
= Aα(αy−β

1 + (1− α)y−β
2 )

(−1
β

)−1
y−β−1
1

Sy2 =
∂S(y1, y2)

∂y2
= A(1− α)(αy−β

1 + (1− α)y−β
2 )

(−1
β

)−1
y−β−1
2

Along an iso-well-being quantile we have ∆S = 0 (i.e. Sy1∂y1 + Sy2∂y2 = 0), therefore

−Sy1
Sy2

=
∂y2
∂y1

=
α

α− 1

(
y2
y1

)β+1

(14)

We exploit the fact that, for y = (y1, y2), conditional on x, we can obtain estimates of ∂y2
∂y1

directly from the estimated quantile Q̂Yj |Xk
(τ) (i.e. for a given value of τ we can compute

∂y2
∂y1

since the level of multidimensional well-being is constant). The estimates of α and β

are then obtained via (nonlinear) regression of our non-parametrically estimated ∂y2
∂y1

on y2
y1

using (14). The values of α and β may vary with the quantile. This means that different

dimensions of well-being contribute differently to well-being at each level of well-being. This

accounts for heterogeneity in preferences.

Coming back to counterfactual effects, the S parametrization is related to the distribution

via quantile sets Q0|1(τ) = {y ∈ R2 : f0|1(y) = τ} and Q1|1(τ) = {y′ ∈ R2 : f1|1(y
′) = τ}.

We use the following notation: y =
(
y
0|1
1 (τ), y

0|
2 (τ)

)
and y′ =

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
. For the S

function we put S0|1
(
y
0|1
1 (τ), y

0|1
2 (τ)

)
and S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
. That is, S0|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
is the value of function S that is associated with distribution f0|1 for a given value τ of the

quantile. It is important to highlight that S is ssociated with f0|1 (by putting S0|1), because

S1|1 will have a different set of parameters (substitution weights), so it will be a different

function than S0|1.

22



We can now define the gap and the counterfactual effects using S parametrization. It

might be more intuitive to talk about shares than raw S scores. In what follows we assume

the following definition of the gap.

Definition 9. The well-being gap using S parametrization is defined as

S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
− S0|0

(
y
0|0
1 (τ), y

0|0
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

) . (15)

Such definition of the gap for wages, namely the difference in average wages for men and

women divided by the average wages for women, was used by Ñopo (2008), who believes

that this better corresponds to the concept of the gender wage gap than simple difference.

Definition 9 is the well-being gap between men and women defined as the difference in well-

being between men and women expressed as a share of women’s well-being at every point

of the distribution of well-being.

Definition 10. The well-being gap using S parametrization is decomposable into structural

and composition effects

S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
− S0|0

(
y
0|0
1 (τ), y

0|0
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

) =

S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
− S0|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

) +

S0|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
− S0|0

(
y
0|0
1 (τ), y

0|0
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

) .

(16)

That is, at any given point τ , the first difference in (16) is the difference in the well-

being of women and counterfactual women who are given men’s conditional distribution of

well-being dimensions. This is the structural effect in well-being. The second difference

is the difference in well-being between counterfactual women and men who differ by their

characteristics but have access to the same conditional distribution of well-being dimensions.

This is the composition effect in well-being. At each point of the distribution we compare

whether men’s, women’s, or counterfactual women’s share of women’s well-being is greater.

Note that both effects are a difference of two numbers, because all S functions are defined

exactly so that they are constant along the isoquant determined by τ in their respective

distributions.

With S parametrization we can construct new counterfactual effects by further decom-

posing the structural effect.
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Definition 11. Let us consider the structural effect in (16). It can be decomposed it as

follows
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
− S0|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

) =

S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
− S1|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

) +

S1|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
− S0|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
(17)

We notice the presence of a new term, namely, S1|1
(
y
0|1
1 (τ), y

0|1
2 (τ)

)
. This is the

parametrization of men’s conditional distribution of well-being dimensions, but using women’s

preferences i.e., substitution parameters α, β from S1|1. These newly created counterfac-

tual women keep their preferences towards two outcomes butas a counterfactual exercise

they are given access to men’s structure of these outcomes. Thus, the first difference in

(17) is the comparison of well-being of women with these hypothetical women and reflects

the change in well-being that corresponds to changing the conditional distribution of out-

comes, but using women’s evaluation function of these outcomes. The second difference in

(17) concerns the change of substitution parameters and thus the impact of this isolated

change only. Please note that S1|1
(
y
0|1
1 (τ), y

0|1
2 (τ)

)
is not constant along the iso-quant

determined by τ , because the parameters are not suited for it to be constant. Therefore,

S1|1

(
y
1|1
1 (τ), y

1|1
2 (τ)

)
−S1|1

(
y
0|1
1 (τ), y

0|1
2 (τ)

)
is a vector of numbers, where the first expres-

sion is constant, but a second expression changes. For the purposes of the ease of exposition,

we did not want to highlight this while introducing the new counterfactual effect, but in

applications one should take the average of these differences over data points related to a

given τ .

Distributions S are unidimensional objects, thus such defined well-being gaps can be

studied in the same way as wage gaps are studied. One can report them at some quantiles,

or compare their distributions using standard tools such as stochastic dominance or unidi-

mensional inequality measures. These well-being shares can act as an independent variable

in a regression framework and permit detailed decomposition.

5 Empirical application

We apply the above described tools to analyse wage-leisure gap in the US using American

Time Use Survey data. Wage is used typically in gap analysis, but as to leisure, according to

ATUS, fathers, on average, have about three hours more leisure time per week than mothers.

The disparity in leisure time between mothers and fathers has been a consistent trend for at

least the past decade. This gap is particularly evident when it comes to time spent in front
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of the television or using other forms of media. According to the American Time Use Survey

(ATUS), fathers spend an average of 2.8 hours more each week than mothers watching TV

or using other media. Additionally, fathers tend to spend more time engaging in sports or

exercising, while mothers spend more of their leisure time participating in social activities,

such as attending or hosting parties.

The ATUS not only measures how individuals spend their time, but also asks about their

feelings and attitudes towards different activities. The survey found that mothers tend to

find their leisure time to be more meaningful than fathers. 63% of mothers rated their leisure

activities as "very meaningful," compared to only 52% of fathers. Despite this, mothers also

reported feeling more exhausted and stressed during their leisure time. This discrepancy in

mothers’ leisure experiences may be related to the way they experience their time. Mothers’

free time is often interrupted, making it difficult for them to fully relax. Additionally,

mothers tend to spend more time multitasking, with the majority of this additional time

spent on household and child care responsibilities.

The variables used are: log of weekly wages; log of weekly leisure time (in minutes),

where leisure is understood in its narrow definition as time spent on activities described

in category 12th of ATUS, namely, socializing, relaxing and leisure10; sex where 1 denotes

male and 0 female; years of education; number of children; marital status, where 1 means

married or stable partnership; log of minutes of housework (weekly); race, where 1 means

white, 2 means black and 3 means other race; residence, where 1 means metropolitan area

and 0 means non-metropolitan area and age reported in the following intervals: <25, 26-35,

36-45, 46-55, 56-65, 66+. Tables 1 and 2 contain summary statistics for these variables.

Table 1: Summary statistics 1: years 2005 and 2021

2005 2021

Mean Median Min Max Mean Median Min Max

Log wage (weekly) (k$) 10.92 11.00 00.00 12.57 11.33 11.45 1.09 12.57

Log leisure (weekly) 5.24 5.34 1.38 7.20 5.29 5.41 0.00 7.11

Sex 0.458 0.00 0.00 1.00 0.475 0.00 0.00 1.00

Education (years) 13.73 14.00 8.00 20.00 14.61 14.00 8.00 20.00

No. of children 0.99 0.00 0.00 3.00 0.73 0.00 0.00 3.00

Marital status 0.58 1.00 0.00 1.00 0.56 1.00 0.00 1.00

Log of housework (weekly) 4.97 4.60 2.30 4.82 4.96 4.49 2.70 6.76

Note: Data come from American Time Use Survey, years 2005 and 2021. The description of the variables is in the
text above.

Figure 1 contains gaps as measured by the difference in inequality measure I. From this
10https://www.bls.gov/tus/lexicons/lexiconnoex2005.pdf.
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Table 2: Summary statistics 2: years 2005 and 2021

Age 2005 2011 Race 2005 2021 Residence 2005 2021

>25 0.12 0.09 White 0.83 0.79 Metropolitan 0.81 0.87

26-35 0.22 0.23 Black 0.11 0.12 Non-metropolitan 0.19 0.13

36-45 0.28 0.23 Other 0.05 0.08

46-55 0.22 0.19

56-65 0.10 0.17

>66 0.02 0.07

Note: Data come from American Time Use Survey, years 2005 and 2021. The description of the variables is in the
text above.

we can a general decreasing pattern of the gap. Female’s inequality is higher than men,

but these differences are smaller over time. Decomposing this trend, we observe the fastest

decrease of the gap for the wage dimension, and for the leisure dimension, after initial

decrease in the first decade of 2000s, the gap remains fairly stable. Altogether, the two

dimensions contribute to a decrease in the overall gap (first picture), but a more moderate

decrease than when considering only wage dimension (second picture). The dependence gap

is also negative, meaning that there is less dependence of wage and leisure among women

than men. The dependence gap is increasing (in absolute value).

A more detailed decomposition of the gap is provided in Table 3. Here we have an

exact decomposition into all seven components, together with the residual from linear ap-

proximation, computed so far for years 2005-2015. In general we note that in each year

case structural effects are greater than composition effects. This is in line with the find-

ing of Maasoumi and Wang (2019) for wages. This is true for wages, leisure and also for

dependence. We also note that starting in 2008, composition effect of wages is negative,

meaning that it would hurt women more if their distribution of characteristics was replaced

by men’s. This again is in line with the finding of Maasoumi and Wang (2019) for wages,

and it indicates that women have surpassed men in terms of the distribution of observable

characteristics. The residual is not more than 1.2%. The composition effects for leisure and

dependence require further inspection.

The evolution of the entropy gap (Figure 2) confirms some of the behaviour of the

inequality gap. The entropy gap between men and women has decreased but more so in

the first decade and remains fairly constant since then. Unidimensional entropies exhibit

similar pattern. Dependence gap is not much different from zero which is different than

the dependence gap measured by the difference in κ’s (Figure 1). The detailed entropy

decomposition results have not been yet computed.

As to the quantile parametrization, we report weight and substitution parameters for
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Figure 1: Inequality measure gaps

(a) Total inequality (b) Wage gap

(c) Leisure gap (d) Dependence gap

Table 3: Decomposition of inequality gap (total inequality gap =1)

S wages S leisure S dependence C wages C leisure C dependence Residual

2005 0.384 0.368 0.128 0.153 -0.050 0.025 0.011

2006 0.380 0.364 0.130 0.158 -0.051 0.027 0.009

2007 0.383 0.381 0.135 0.064 0.038 -0.011 -0.007

2008 0.535 0.250 0.061 -0.126 0.249 0.032 0.002

2009 0.515 0.200 0.131 -0.120 0.231 0.032 0.002

2010 0.433 0.123 0.345 -0.004 0.202 -0.117 -0.008

2011 0.834 0.271 0.423 -0.333 -0.023 -0.165 0.006

2012 0.326 0.405 0.374 -0.050 -0.095 0.026 -0.012

2013 0.508 0.193 0.353 -0.021 0.118 -0.156 -0.003

2014 0.490 0.220 0.410 -0.091 0.007 -0.023 -0.003

2015 0.481 0.454 0.551 -0.227 -0.108 -0.138 0.012

Note: Data come from American Time Use Survey, years 2005-2021. S stands for “structural” effect and C for
“composition“ effect.
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Figure 2: Entropy measure gaps

(a) Total entropy gap (b) Entropy gap wages

(c) Entropy gap leisure (d) Entropy gap dependence

years 2005 and 2021 (Table 4). We draw the following observations: (i) There is substan-

tial heterogeneity with varying quantiles, which confirms reservations that applying homo-

geneuos evaluation functions may mask real trade-offs. (ii) Weight parameters are similar

for men and women in both years. (iii) Both women and men have higher substitution

parameters in 2021 than in 2005 at each quantile. (iv) Women have higher substitution

parameters than men at each quantile in both years, except for women at the top decile

in 2021. Please note that higher substitution parameters mean lower elasticity of substi-

tution. Goods are then complements rather than substitutes. The difference between men

and women in this respect should be contrasted with the analysis of what happens to home

production (housework, childcare etc.) at different quantiles, which ATUS data enable. This

is left for further inspection.

Not surprisingly, substitution dominates at lower quantiles. Women have lower levels

of substitution but these differences are narrowing, in fact, at each quantile differences in

substitution parameters between men and women are lower in 2021 than in 2005.
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Table 4: Parameters’ values for different quantiles: years 2005 and 2021

2005

τ αM βM αF βF

0.2 0.84 6.00 0.85 6.78

0.3 0.86 7.54 0.87 8.83

0.4 0.88 9.16 0.89 10.57

0.5 0.89 10.72 0.90 12.77

0.6 0.90 12.65 0.91 14.98

0.7 0.91 14.88 0.92 17.85

0.7 0.93 18.67 0.93 21.13

0.9 0.94 24.71 0.94 25.51

2021

τ αM βM αF βF

0.2 0.82 4.93 0.84 5.81

0.3 0.85 6.72 0.86 7.66

0.4 0.87 8.15 0.88 9.41

0.5 0.88 9.81 0.89 10.93

0.6 0.89 11.50 0.90 12.62

0.7 0.90 13.34 0.91 14.63

0.7 0.92 16.06 0.92 16.98

0.9 0.94 23.52 0.93 21.66

Note: Data come from American Time Use Survey, years 2005-2021. Subscripts M, F denote, respectively, male and
female.

6 Conclusions

In this paper we tackle the problem of measuring gaps and counterfactual effects, but when

the outcome is multidimensional. This concerns for example estimation of well-known gender

gaps, but in the case when we compare not only men’s and women’s wages, but also for

example their life expectancy, or any other outcome of interest. Therefore, we call these

effects well-being gaps.

The multidimensional framework requires new definitions of well-known counterfactual

effects. For distribution effects, the definitions are the same, but new counterfactual effects

can be proposed given the multidimensional nature of outcomes. The problem that appears

in a multidimensional context that is absent from a unidimensional framework concerns

quantile effects. In our context, quantiles are sets, and there appears a problem of how to

define the difference between two sets. Another issue that appears only in the multidimen-

sional framework is outcomes’ dependence and its role in the differences between considered
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groups.

As to possible extensions of our framework, let us discuss two extensions that naturally

come to mind. First is the extension that allows for comparisons of more than two groups.

For example, with racial gaps, it could be the comparison of Whites, Blacks and Hispanic,

and other groups. This extension is straightforward and requires only new notation. Let the

populations be labeled k ∈ K with |K| the number of populations, and for each population

k, there is a random dx-vector Xk of covariates and a random outcome dy-vector Yk. We

denote the support of Xk by Xk ⊆ Rdx and denote the region of interest for Yj by Yj ⊆ Rdy .

The counterfactual distribution and quantile functions are constructed by integrating the

conditional distribution FYj |Xj
in population j with respect to the covariate distribution

FXk
in population k, namely

FY <j|k(y) :=

ˆ
Xk

FYj |Xj
(y|x)dFXk

(x), y ∈ Yj

We define a counterfactual effect as the result of a shift from one counterfactual distribution

FY <l|m to another FY <j|k for some j, l ∈ J and m, k ∈ K

∆(y) = FY <j|k(y)− FY <l|m(y).

The rest of the analysis follows using such defined objects.

Another extension is an extension to more than two outcomes. Such model can be

written theoretically by taking Yl, a member of Yl ⊆ Rl, where l > 2. Multivariate inequality

measures are defined for such distributions and their attribute decomposition will have the

following form

I(F ) =
r1∑l
i=1 ri

I1(F1) + . . .+
rl∑l
i=1 ri

Il(Fl) +
1∑l
i=1 ri

κl +R

where Ij are still unidimensional Atkinson indices and

κl = 1−
´
yr11 . . . yrll dF (y1, . . . , yl)´
yr11 dF1(y1) . . .

´
yrll dFl(yl)

.

The copula density can also be defined for random vectors of dimensionality more than two.

Both the logarithm decomposition and entropy decomposition can be computed. However, as

to the quantile effects and parametrization, the generalization includes conditions on higher

order derivatives in order for parameters to be recovered. This may become uninterpretable

for many dimensions, so there seems to be a practical (not theoretical) upper limit on the

number of dimensions to be used, but so is the case in practical usages of, e.g., stochastic

dominance.

Finally, the methods presented here allow for aggregate decomposition. A detailed de-

composition using I or entropy, or S parametrization or any other distributional statistic

could be obtained via Shapley decomposition based on Shorrocks (2013). According to
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Shapley value decomposition, the total contribution of a characteristic/factor is defined as

the expected marginal decrease of the considered distributional statistic caused by the elim-

ination of this factor, when the expectation is taken over all possible combinations of the

elimination of this factor. The decomposition has the added value of being path indepen-

dent.11 If not Shorrocks decomposition which uses a particular notion of decomposition,

namely Shapley value, then the problem of detailed decomposition in many dimensions

remains open for future research.12
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Appendix

Proof of Proposition 2. We derive and proof the attribute decomposability of I(F ) as defined

in (4). We focus on the case of two outcome dimensions, but this restriction can be easily

relaxed given the results in Abul Naga and Geoffard (2006). Let W (F ) =
´
U(y1, y2)dF

with utility function U denote the social welfare function with standard properties of being

concave and increasing. δ is defined asW (F ) =W (δ(F )ȳ), where ȳ is a vector of dimensions’

means ȳ1, ȳ2. That is, δ is a proportion of each outcome that if given to every individual

in the population results in the same level of welfare as the original distribution F . Now

I(F ) = 1 − δ(F ), where δ(F ) ∈ [0, 1] is a measure of equality. This is the procedure that

produces inequality measures that are normatively significant, in a sense that welfare W

goes down whenever the associated inequality measure I goes up. In the same way as with

I, we can consider attribute decomposability of δ.

Lemma 1. δ(F ) is attribute decomposable as follows:

ln δ(F ) =
r1

r1 + r2
ln γ1(F1) +

r2
r1 + r2

ln γ2(F2) +
1

r1 + r2
lnκ(F ), (18)

where

Proof. Let δ be the proportion of ȳ that is necessary to achieve the same level of welfare

if all attributes were distributed equally. Formally, let w0 =
´
U(δȳ1, δȳ2)dF denote the

welfare level associated with ȳ. Second, let ρ1 be the proportion of ȳ1 that is necessary to
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attain w0, if the first attribute was equally distributed and the distribution of the second

attribute remained as is. Formally, w0 =
´
U(ρ1ȳ1, ȳ2)dF . Third, let γ1 be the proportion

of ȳ1 that is necessary to attain w0, if both attributed were distributed equally. Formally,

w0 =
´
U(γ1ȳ1, ρ2ȳ2)dF .

For the utility function that embeds Tsui (1995) inequality measure U(y1, y2) = −yr11 y
r2
2

with r1, r2 < 0 to ensure increasingness and sensitivity to increases in association between

variables, it follows that

w0 =

ˆ
(δȳ1)

r1(δȳ2)
r2dF =

ˆ
(γ1ȳ1)

r1(ρ2ȳ2)
r2dF.

After modification, we get δr1+r2 = (γ1)
r1(ρ2)

r2 . Going further,

ln(δ) =
r1

r1 + r2
ln(γ1) +

r2
r1 + r2

ln(γ2) +
1

r1 + r2
ln (ρ2/γ2)

r2 , (19)

which is the desired decomposition with κ := (ρ2/γ2)
r2 . We now need to derive γ1, γ2 and

κ.

Note that w0 =
´
(γ1ȳ1)

r1(ρ2ȳ2)
r2dF =

´
(ȳ1)

r1(ρ2ȳ2)
r2dF . Solving for γ1 yields:

γ1 =

(ˆ
yr11
ȳr11

dF1(y1

) 1
r1

.

Similarly, for γ2 we get:

γ2 =

(ˆ
yr22
ȳr22

dF2(y2

) 1
r2

.

Furthermore, we use w0 =
´
(ȳ1)

r1(ρ2ȳ2)
r2dF =

´
(ȳ1)

r1(ȳ2)
r2dF to obtain

ρ2 =

( ´
yr11 y

r2
2 dF´

yr11 ȳ2
r2dF

) 1
r2

.

Finally, substituting the expressions for γ2 and ρ2 into κ := (ρ2/γ2)
r2 we get:

κ =

´
yr11 y

r2
2 dF (y1, y2)´

yr11 dF1(y1)
´
yr22 dF2(y2)

.

Linear Approximation. Collecting terms and reversing the log-linearization of δ, we

obtain the attribute decomposition of I:

I = 1− (γ1)
r1

r1+r2 (γ2)
r2

r1+r2 (κ)
1

r1+r2 . (20)

Applying a linear approximation around the point of perfect equality (i.e. γ1 = γ2 = κ = 1),

we get the linear decomposition.

I(F ) = r1
r1+r2

(1− γ1) +
r2

r1+r2
(1− γ2) +

1
r1+r2

(1− κ) +R,

= r1
r1+r2

I1 +
r2

r1+r2
I2 +

1
r1+r2

(1− κ) +R.
(21)
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