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Abstract

This paper provides theoretical foundations for preference discovery the-

ory. We propose to relax the assumption that the consumer has perfect

knowledge of their own preferences, so that the consumer knows only the

subjective probability of those alternatives being in any given relation, which

is conditional on the information available to the consumer. To achieve that,

we construct probabilistic measures on the space of all permissible preference

relations and consider the consumer to be equipped with one such measure,

instead of a preference relation. These measures are intrinsically linked by

construction to the information structure available to the consumer and al-

low for indirect learning. We visualize how these measures correspond to

the choices of the consumer, we consider three distinct decision procedures.

These procedures formalize how under different assumptions regarding the

underlying probability measure, the consumer guesses their own tastes. Fi-

nally, we use these measures to define value of the information provided

by the consumption of a chosen alternative and study the properties of the

preference ranking induced by it.
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1 Introduction

The most usual approach taken by economists to decision theory assumes what

Simon (1976) calls the substantive rationality of individuals. This describes con-

sumer choices as the outcome of utility maximising behaviour, that is driven by

stable and well-defined consumer preferences. The approach differentiates the eco-

nomic perspective on decision theory from the psychological one, which assumes

procedural rationality. Substantive rationality is a stronger condition to satisfy,

than procedural rationality, as it demands that rational behaviour be appropriate

for achieving a certain goal under given limits and constraints, whereas procedu-

ral rationality sees behaviour as rational if only it is the outcome of appropriate

mental deliberation.

Although the classical approach of economists (e.g. Debreu 1959) has sub-

stantial descriptive and predictive power, it comes at the price of multiple behav-

ioral paradoxes (e.g. Kahneman and Tversky 1979, DellaVigna 2009, Lerner et

al. 2015). While the examples of behaviour that many of those paradoxes give

can be seen as merely violating the axioms of certain economic theories, some

of the paradoxes, including contingent valuations (e.g. Schkade and Payne 1994,

Loomis 2011), the endowment effect (e.g. Kahneman et al. 1991, Loewenstein

and Issacharoff 1994, Bordalo et al. 2012a) and asymmetric dominance (Ariely

and Wallsten 1995, Simonson and Tversky 1992) can be seen as challenges to the

overall notion of substantive rationality. Especially troubling for economic the-

ory is the preference reversal paradox (e.g. Lichtenstein and Slovic 1971, 1973,

Bleichrodt and Prades 2009, Trautmann et al. 2011) which has led many psycho-

logical theories to reject the existence of preferences altogether. As Grether and

Plott (1979) note, preference reversal can be seen as a paradox that undermine

not just one particular economic theory, but rather the existence of any maximis-

ing behaviour at all. Many theories follow up on this rejection, giving rise to the

notion of preference construction (e.g. Lichtenstein and Slovic 2006, Warren and

McGraw 2011).

Theories of preference construction see choice as an outcome of procedures

that the consumer follows when faced with a decision. Crucially, choice is not

assumed to be procedure-invariant, meaning that different procedures give rise to

different preferences (e.g. Tversky et al. 1988). People are assumed to use a wide
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variety of procedures, which they often develop on the spot when they are faced

with a given choice, and even change during the task if the procedure leads to an

unsatisfactory result or does not solve the problem at all (e.g. Coupey 1994, Slovic

1995, Bettman et al. 1998, Simon et al. 2008). Theories of preference construc-

tion often assume there to be different decision modes, like pairwise comparisons

and separate evaluations (e.g. Schkade and Johnson 1989, Nowlis and Simonson

1997) and this is how psychological theory usually explains the preference reversal

paradox. The procedures proposed include the search for a dominance structure,

attribute weighting, salient choice and constraint satisfaction (e.g. Montgomery

1998, Tversky et al. 1988, Simon et al. 2004, Bordalo et al. 2012b, Glöckner et

al. 2010).

Many theories of the substantively rational consumer have also been shown to

be able to incorporate preference reversal. Those theories include regret theory

(Loomes and Sudgen 1982), reference dependence (Sugden 2003), preference dis-

covery costs (Wilson 2018) and contextual deliberations (Guo 2021). Of special

importance to us however is the preference discovery theory of Plott (1996), which

occupies the middle ground between economics and psychology. This theory re-

tains the substantive rationality of the consumer but changes the interpretation

of it, seeing it more as a process than as a state (e.g. Rizzo and Whitman 2018).

At the same time it maintains the irrational character of paradoxical behaviour

rather than accommodating it. It is a very intuitive theory that effectively uses

Aristotle’s concept of tabula rasa, or the lack of any innate knowledge, as its jus-

tification. Plott (1996) suggests that preference discovery is the theory that both

economists and psychologists usually believe, but that they hardly ever state.

The theory proposed in Plott (1996) is based around the observation, that

many of the paradoxes of choice, including preference reversal and the endow-

ment effect (e.g. Cox and Grether 1994, Plott 1996), seem to be less prevalent

in repeated experiments, with incentives. This observation led Plott (1996) to

propose a three-stage theory of how the consumer discovers their own preferences.

In the first stage, consumer choices are usually chaotic and irrational. It is dur-

ing this stage that the consumer explores the set of choice alternatives available

to them, learning by trial and error how much satisfaction they can obtain from

each choice. In the second stage, the consumer’s choices begin to stabilise, as the

consumer starts to become aware of their own preferences. This is reflected by
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those choices getting closer and closer to what substantive rationality would imply.

The only thing left at this point is for the behavior of other agents to be recog-

nised as rational, and this is reflected in the continued prevalence of paradoxes

in a setting that incorporates interactions with others. The recognition is finally

achieved in the final stage, when the individual finally acts as a substantively

rational consumer.

Rizzo and Whitman (2018) describe substantive rationality as a process from

the point of view of preference discovery, rather than a given state. Preference

discovery asserts that while well-defined and stable preferences exist, the choices

observed can nevertheless be unstable if the individual is unaware of their own pref-

erences. This differentiates preference discovery from the psychological viewpoint

that preferences do not exist, and also from the dominant approach in economics,

which is best described by the assertion of Stigler and Becker (1977) that we can

always assume that preferences are given and stable.

Several studies (e.g. Braga and Starmer 2005, Braga et al. 2009, Bruni and

Sudgen 2007) point out that although it can be seen as arguing in favour of

the substantive rationality of the agent, preference discovery cannot be treated

as a blanket defence of classical economic theory. Especially notable from our

perspective is the observation of Bruni and Sudgen (2007) that we cannot simply

assume that all people operating in markets have finished the process of preference

discovery and are fully informed of their own tastes. This opinion finds support

in experimental results (e.g. Kingsley and Brown 2010, Delaney et al. 2019) that

show that even though individuals discover their preferences to a certain degree

and this leads them to make more consistent choices, they tend not to discover

their preferences fully, especially when the choices are important or the options

are easy to compare (e.g. Hoeffler and Ariely 1999).

We agree with those sentiments, but rather than rejecting the preference dis-

covery hypothesis because it fails as a defence of substantive rationality, we believe

that it is precisely because of this failure that we should take preference discovery

seriously and treat it as a standalone theory of consumer choice under imperfect

knowledge of self. Intuitively, there are many instances in which preference dis-

covery can contribute greatly to our understanding of consumer behaviour, and

this remains the case even if consumers have tended to achieve a perfect discovery

of their preferences in an experimental setting. Those instances can include the
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introduction of a new product; the possible inherent preference of the consumer for

products they have not previously consumed, such as new movies; the acquisition

of knowledge that causes a change that is hard to reverse, such as the discov-

ery of preferences for addictive substances; or the boundaries placed on unlimited

experimentation, as is usually the case with preferences for romantic partners.

Preference discovery also seems like a natural theory to use for studying the ex-

perimental consumption of the individual, as learning about their own preferences

through consumption gives that individual the motivation for such behaviour.

There is a lot of promising empirical research on preference discovery. There

are studies that show that preference discovery can account for preference reversal

(e.g. Cox and Grether 1996, Plott 1996, Butler and Loomes 2007), explain the

WTP/WTA disparity (e.g. Plott and Zeiler 2005, Engelmann and Hollard 2010,

Humphrey et al. 2017) and the order effects in stated preference studies (e.g. Day

et al. 2012, Carlsson et al. 2012), while there are others that conclude that market

experience is crucial in stabilising consumer choices (e.g. Kingsley and Brown

2010, Czajkowski et al. 2015). The results obtained by van de Kuilen (2007)

suggest that preference discovery can even account for behavioural effects such

as probability weighting, as the elicited probability weighting function converges

significantly towards linearity when the respondents are asked to make repeated

choices. At the same time, there are hardly any theoretical studies on the process

of preference discovery, as Delaney et al. (2014) propose the only theoretical model

of preference discovery, to the best of our knowledge.

Delaney et al. (2014) study the consumer with undiscovered preferences. They

consider a very restrictive setting with a finite number of choice objects, and the

menus of choices that are given exogenously in all time periods. Among the

assumptions of the model are firstly that the consumer has exogenously given

preferences that are well-behaved in all time periods, meaning they are complete,

transitive and reflexive, and these preferences correspond to the consumer’s guess

about the real ranking of alternatives; secondly that the consumption of any given

alternative does not change the ranking between any two different alternatives,

meaning that indirect leaning is explicitly prohibited. Indirect learning means

that consuming an alternative informs the consumer not only about its ranking

relative to the other alternatives experienced, but also about the probability that

one of the two unrelated alternatives is preferred over the other. As a result of
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those assumptions, the model of Delaney et al. (2014) only allows for the study

of how preference discovery depends on the menus available to the consumer at

all time periods and cannot be a satisfactory model of preference discovery.

That said, taste uncertainty has been found in the economic literature since at

least the contribution of Kreps (1979). He showed that weak axioms on preferences

are sufficient to represent introspective uncertainty using a subjective set of states.

The result is that consumers can have a coherent, albeit not unique, subjective

state space, without it being given exogenously. This has been achieved by a

change of the domain over which the preferences are defined, meaning by defining

the preferences for menu and consumption pairs rather than just for consumption,

with the additional assumption of a preference for flexibility. The preference for

flexibility states that the consumer should prefer a menu that is larger with respect

to inclusion. One potential justification for this axiom is the existence of taste

shocks that might affect future preferences, which then make a larger menu a

safer choice. In a later reformulation by Dekel et al. (2001), the uniqueness of

this subjective state space is obtained by another change of domain, this time

to include lotteries over future action in a choice set. In both of these models,

though, the resolution of uncertainty occurs irrespective of consumption choices.

Cooke (2017) and Piermont et al. (2016) provide two extensions of the model that

condition learning of the subjective state space on consumption and those two

articles constitute the contemporary work that is most relevant to our study.

Both Cooke (2017) and Piermont et al. (2016) consider the consumer with

uncertain tastes that exhibits the preference for flexibility. The demand for flex-

ibility in those two models is driven by the desire to have more options, as any

new information that is acquired can impact the choices from future menus. The

main difference between the two models is in their setup: Piermont et al. (2016)

consider ordinal preferences and infinite horizon of consumption, but the model of

Cooke (2017) features two stages of consumption and cardinal preferences. Both

models obtain the unique representation that is similar to the one in Kreps (1979)

by a further change of domain: Cooke (2017) assumes preferences to be defined

over the pairs of current consumption and future menu, and in Piermont et al.

(2016) the objects of choice are infinite-horizon choice problems, defined as the

paths of future consumption conditional on the information obtained. Indirect

learning is permitted by both models, but only Cooke (2017) considers it in any
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detail.

Other notable work on taste uncertainty is the model proposed by Loomes et al.

(2009). It is based on the earlier work on the reference dependent prospect theory

by Sugden (2003), with the addition of a finite set of states of the world to represent

taste uncertainty. The objects of choice in this setting are Savage’s (1954) acts,

and the reference act is chosen explicitly. The authors use the representation

obtained to explain trade asymmetries and study how this effect changes with the

change in taste uncertainty. However, Loomes et al. (2009) does not consider the

connection between consumption and the resolution of taste uncertainty. There is

no learning or any explicit modelling of preference discovery in this model.

In this article we propose theoretical foundations for preference discovery. We

only consider the first stage of preference discovery from the original theory of

Plott (1996), as we do not look at social interactions and restrict our attention

only to the case of the consumer who is in the process of exploring the available

alternatives. Moreover, we focus explicitly on a static setting, meaning we do not

consider the questions about the evolution of preferences after choice or the paths

of consumption generated by consumer choices. We only study how the consumer

perceives their preferences given the information currently available to them. This

perspective seems to us to be of particular importance, as most of the theoretical

research on preference uncertainty (e.g. Delaney et al. 2014, Piermont et al. 2016,

Cooke 2017) is focused on dynamic aspects of preference discovery.

We consider a consumer with limited self-knowledge, meaning a consumer who

does not know their “real” preference relation, which is partially revealed by con-

sumption. We incorporate both direct and indirect learning, as consumption not

only reveals truthfully the preference rankings of the consumed alternatives, but

also impacts on the perception of other alternative choices. This impact is in-

troduced using the notion of similarity between alternative choices, meaning the

consumer uses a similarity metric to extrapolate their preferences from the known

alternatives to the unknown ones.

More specifically, we model the consumer’s perception of their own preferences

using probability measures on the space of all preference relations that satisfy cer-

tain rationality conditions, and the perception of the consumer’s own preferences

after they have consumed some limited subset of alternatives is obtained as a con-

ditional probability measure. This probability is interpreted as the strength of the
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belief that any given preference relation is identical to the unknown, real prefer-

ences of the consumer. As those probability measures fully represent the consumer,

we propose that the consumer be considered as equipped with such a probabilis-

tic measure, rather than just a single preference relation. From this subjective

probability, we identify and study two natural motivations that affect consumer

choices during the preference discovery. These are firstly experimental motivation,

which describes the value to the consumer of information about their own prefer-

ences as revealed by a given choice, and secondly immediate consumption-oriented

motivation, which describes the current beliefs of the consumer about their real

preferences, and focuses on the expected immediate utility from a given choice.

The starkest difference between our paper and contemporary works concerns

the choice of the issues we study and the philosophy behind doing so. What we

do is philosophically very close to various theories of preference construction (e.g.

Lichtenstein and Slovic 2006), with the assumption that the real preference relation

that informs the consumer about their own preferences is the only easily discernible

red line that we do not cross. Even though this assumption is mostly philosophical

and not binding in the static case, it is reflected throughout our article, in the

assumption for example that consumer perception is path independent, meaning

that only the subset of known alternatives matters, not the order in which they

were consumed. However, we do not exclude the possibility that consumer choices

are procedure dependent as we do not commit to any particular position on this

and we do not propose any specific function for representing consumer choices. We

do, however, consider multiple decision modes and how they correspond to different

preferences, and we give examples of where evaluation in a given mode might be

seen as reasonable. These examples might be interpreted either as legitimate

decision procedures, or as specific examples of a more general choice function, but

our goal is simply to describe different factors in consumer perception.

As a consequence we strongly diverge from contemporary articles in our mod-

elling approach. Piermont et al. (2016), Cooke (2017) and Loomes et al. (2009)

all assume that the consumer is equipped with exogenously given preferences over

final objects of choice, that depending on the model in question can be menu and

consumption bundles, infinite horizon choice problems or Savage’s acts. These

preferences exogenously determine the resolution of the trade-off between the im-

mediate satisfaction from consumption and experimentation. We do not make
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that assumption, and instead we equip the consumer with a probability measure

that represents how the consumer anticipates both learning and immediate sat-

isfaction from consumption to be, but that does not assume a resolution of the

conflict between those two motivations. Moreover we do not assume the preference

for flexibility and do not use reference dependence or prospect theory.

Additionally we take a different approach to learning from consumption, that

we model explicitly. In contrast to Piermont et al. (2016) and Cooke (2017) we

assume an objective state space, that we define to be the state space to be a

space of all preference relations that agree with the ranking of already consumed

alternatives. Moreover not only like these articles we allow for indirect learning,

we additionally use the notion of similarity between choices to provide additional

structure that governs this behaviour. The idea of similarity as a tool that allows

for indirect learning from experience is very much present in the literature, with

Huang et al. (2014) also employing it in the context of incomplete preferences

and more relevantly in the case-based decision theory proposed by Gilboa and

Schmeidler (2001). This work is notable as these authors also consider the problem

of evaluating future choices from past experiences. However, in case-based decision

theory learning is not based on consumption, but rather on the vague memories of

the decision maker. Moreover, the decision maker it considers is not substantively

rational and the experimental behaviour is not motivated by the potential for

higher utility from future choices, but rather by a general lack of satisfaction with

the outcomes currently obtained, which is represented by the marginal value of

the outcome that is deemed acceptable for the consumer.

The structure of the article is as follows. We start in section 2 with some

preliminary definitions that form the conceptual framework for our work. Section

3 is mostly technical and occupies itself with the construction of a topology on

the space of all the preference relations that the consumer might have, and of

Borel measures on this space. We interpret those measures as representing the

perception of the consumer about their own preferences, conditional on the in-

formation available. Sections 4 and 5 consider two major sources of motivation

for the consumer, with immediate satisfaction from consumption in section 4 and

discovery of the consumer’s own preferences in section 5. Finally in section 6 we

summarise everything we have done and point towards some possible areas for

further research.

9



2 Elementary definitions

Let B be the space of choice objects. We assume that B comes equipped with a

metric d : B × B → R+, together with topology on B induced by d. Moreover,

we demand that B is compact, separable and connected. We denote the generic

elements of B by x, y, z and open balls in B with the centre at x and the radius

r as B(x, r). The interpretation of metric d is as a measure of similarity of the

alternative choices, i.e. d(x, y) < d(x, z) means that x is more similar to y than

to z (technically d measures the dissimilarity of the alternatives, but we call it a

measure of similarity nevertheless).

In addition to that, we equip B with an arbitrary regular Borel measure λ,

such that λ(B(x, r)) > 0 for all x ∈ B, r ∈ R++. One simple and satisfactory

example of such measure is to define λ(B(x, r)) = r. Abusing the notation a

little, we also denote by λ the induced product measure on B2, which is given by

λ(A × B) = λ(A)λ(B) and similarly by d the product metric on B × B given by

d((x1, y1), (x2, y2)) =
√
d(x1, x2)2 + d(y1, y2)2.

We define Ω to be a set of all the permissible preference relations, meaning

a set of all the binary relations on B that satisfy axioms 1–3 stated below. The

generic element of Ω is denoted by ω.

Axiom 1. (Rationality) Let ω ∈ Ω. Then ω is complete, reflexive and transitive.

Axiom 2. (Continuity) Let ω ∈ Ω. For each x ∈ B sets {y ∈ B : x �ω y},

{y ∈ B : y �ω x} are closed in B.

Axiom 3. (Limited Indifference) Let ω ∈ Ω and x ∈ B. Then

λ({y ∈ B : x ∼ω y}) = 0.

The set Ω consists of all the relations that might be the preferences of a given

consumer. Their unknown real preferences are the one element of Ω that is distin-

guished, and they are denoted by ω∗. We denote the relation of weak preference

with respect to preferences ω ∈ Ω by x �ω y and for strict preference and similarity

relations we use respectively �ω and ∼ω.

Axioms 1 and 2 are standard axioms of utility theory, and the theorem of De-

breu (1954) states that preferences that satisfy those axioms can be represented by

a continuous utility function. Axiom 3 states that indifference curves are “thin”;
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this is not necessary in any substantial way, and is it introduced only as a simpli-

fication. The intended consequence of this axiom is, that for a randomly chosen

x, y ∈ B it should be very unlikely that x ∼ y.

We use D ⊂ B to denote a finite subset of alternative choices, that have already

been consumed. By assumption, the real preference relations between all the pairs

of elements of D are known. We denote by Ω(D) ⊂ Ω those preference relations,

that agree with ω∗ on D, that is Ω(D) = {ω ∈ Ω : ∀x,y∈D x �ω y ⇐⇒ x �ω∗ y}.

To simplify the notation, we also define a set KD of formal expressions that

correspond to those known relations, meaning the elements of KD are expressions

of form xRy where R ∈ {�,�,∼,≺,�} and x, y are elements of D. The set KD
consists of expressions that correspond to precisely those relations that agree with

ω∗, so x � y ∈ KD ⇐⇒ x �ω∗ y, and the same for other relation symbols. For the

sake of brevity, we often present KD as for example KD = {x1 � . . . xi ∼ xi+1 �

· · · � xn}, but this definition has precisely the same meaning, as for example

with the definition as above, we still have xn � x1 ∈ KD (we never consider

sets of relations that are inconsistent, meaning intransitive or irreflexive, as ω∗ is

transitive and reflexive).

We simplify the language a little by referring from now on to elements of KD as

relations, or sometimes conditions, instead of “formal expressions that correspond

to relations”. For formal reasons we sometimes also consider sets of relations that

are not linked to any particular D, so for example we may consider K = {x1 �

x2, x3 ∼ x4}. With this definition, it still holds that for example x3 � x4 ∈ K,

meaning that K is a transitive closure of {x1 � x2, x3 ∼ x4}. However we do not

demand completeness, meaning that the definition does not specify any relation

between x1 and x2 and it does not have to — just as x1 does not have to be an

element of D and we do not even have to specify D in this context. Moreover, for

this K we also define Ω(K) = {ω ∈ Ω : ∀xRy∈K xRωy}.

Example 1. To visualise all these definitions and their intended interpretations,

consider the example that the alternative choices are different movies that are

uniquely and precisely described by some n-element vectors of characteristics,

which are all normalised to [0, 1], giving us B = [0, 1]n. Movies are similar if they

have similar characteristics, which the consumer infers from the description and

the trailer, and metric d, which we may assume is Euclidean, defines the specific
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shape of how the consumer perceives this similarity. The consumer has some

real preferences ω∗ over those movies, but does not know what those preferences

are. However, they know how to rank the movies they have already seen, and

vectors representing all those movies are the elements of D, and their ranking of

those movies is given by KD. They also knows that their preferences have to be

“sensible”, where sensible is defined as satisfying axioms 1–3, and that they must

agree with their ranking of the movies they have already seen, meaning they must

be a member of Ω(D).

There are two important things to note from example 1. The first, is that ω∗

is the only element that is interpreted as unknown to the consumer. Therefore we

assume that the consumer knows all the alternative choices, remembers their past

choices and ranks those choices without mistakes, though indeed their knowledge

goes even deeper than that as they are also aware of axioms 1–3, meaning they are

aware that they are, for example unlikely to find a movie that is exactly as good

as Godzilla, or that if they prefer Godzilla to Rambo, then movies like Godzilla 2

that are sufficiently similar to Godzilla should also be preferred to Rambo. They

also perceive the distances between alternatives, even those as yet unconsumed

and do so without mistakes, so that if they perceive Godzilla 2 to be extremely

similar to Godzilla then it cannot be the case that after watching Godzilla 2 they

find the two not to be similar at all. It is possible that they find their tastes to be

starkly different for Godzilla and Godzilla 2, but this would be the consequence

of differences between the movies that they previously knew of but did not know

their preferences for, rather than the other way around.

The second thing to note is, that metric d should be interpreted as the sub-

jective perception of similarity by the consumer, and as such it should usually

be assumed to be ex ante unknown in experimental studies. One consequence of

this observation is the prospect of potential problems with empirical identification,

as the probability measures that we introduce in section 3 depend on similarity

between alternatives, so the question remains whether it is possible to identify

jointly both the probability measure and the similarity metric behind it. More-

over, this perception of distance can be malleable when faced with framing or

other marketing techniques (e.g. Mandel and Johnson 2002, Ariely et al. 2006).

The assumption that ω∗ exists is mostly philosophical, and it has relatively
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few implications within the scope of this article. The only place during the whole

article where we use ω∗ is in the definition of the set of known relations KD,

and ω∗ guarantees that the relations in KD are consistent with one another and

stable. Keeping those two conditions constant, we could equally consider KD to be

constructed from D via some procedure of preference construction and this would

have no real impact on our analysis.

3 Construction of measures

This section is mostly technical and is oriented towards the development of proba-

bility measures on Ω, that could serve to represent the preferences that consumer

with limited knowledge of their own tastes expects to have. To do this, we first

need to introduce some topological structure on Ω. There are several studies that

introduce topology on sets of preferences, among which Kannai (1970) is probably

the best known. However, none of the constructions in the literature is sufficient

for our purposes, as we need this topological structure to be linked to the sets that

represent the information available to the consumer. We begin with the following

definition.

Definition 1. Let x, y ∈ B and R ∈ {�,�,∼,≺,�}. We define [xRy] = {ω ∈

Ω : xRωy} and call it a condition on x, y.

For any finite sequence (xi, yi, Ri)
n
i=1 we denote the intersection of conditions⋂n

i=1[xiRiyi] as [
∧n
i=1 xiRiyi] and call it a conjunction of conditions on xi, yi and

the union of conditions
⋃n
i=1[xiRiyi] as [

∨n
i=1 xiRiyi] and call it a disjunction of

conditions on xi, yi. Similarly, for any K = {x1R1y1, . . . , xnRnyn} we denote

[K] = [
∧n
i=1 xiRiyi]. The terms conjunction and disjunction are justified, as we

have [
n∧
i=1

xiRiyi

]
=

n⋂
i=1

[xiRiyi] =

{
ω ∈ Ω :

n∧
i=1

xiRiωyi

}
,

and similarly [
n∨
i=1

xiRiyi

]
=

n⋃
i=1

[xiRiyi] =

{
ω ∈ Ω :

n∨
i=1

xiRiωyi

}
.

For a given conjunction of conditions [
∧n
i=1 xiRiyi], we also define its length by

l([
∧n
i=1 xiRiyi]) = n and a set cp([

∧n
i=1 xiRiyi]) = {(xi, yi) : i ≤ n} of the pairs on

which the conditions are imposed.
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A little informally1, let α be a logical formula constructed from expressions

of the form xiRiyi for Ri ∈ {�,�,∼,≺,�} together with logical connectives and

quantifiers. As an example, we could define α = [(x1 � x2) ∨ ¬(x1 ∼ x3)] =⇒

[x4 � x1]. We denote the evaluation of α with respect to element ω ∈ Ω by

αω ∈ {0, 1}, that is αω = 1 if replacing every Ri in xiRiyi in α gives a true logical

statement. For example, the statement α = [(x1 � x2)∧(x2 � x3)] =⇒ (x1 � x3)

evaluates to αω = 1 for every transitive ω (and would evaluate to αω = 0 for a

non-transitive one) as [(x1 �ω x2) ∧ (x2 �ω x3)] =⇒ (x1 �ω x3) is a true

statement for any transitive ω. For such logical formulas α we can similarly define

[α] = {ω ∈ Ω : αω = 1}.

We define the topology on Ω, to be the topology generated by the family of

conditions {[x � y] : x, y ∈ B}. As a consequence, closed sets in Ω are generated

by the family of conditions {[x � y] : x, y ∈ B}.2

After those topological considerations, we are now ready to consider measures

and corresponding σ-fields, on Ω, which we always denote by µ. The proper-

ties given by axioms 4-6 are the primitive assumptions that we make about the

measure, and are kept constant through everything that follows.

Axiom 4. (Non-degeneracy) Let U ⊂ Ω be open and nonempty. Then µ(U) > 0.

Axiom 5. (Continuity) For all pairwise non-equal x, y, x′ ∈ B and any ε > 0

there exists δ > 0 such that d(x, x′) < δ =⇒ |µ([x � y])− µ([x′ � y])| < ε.

Axiom 6. (Restricted Indifference) Let x, y ∈ B be such that x 6= y. Then

µ([x ∼ y]) = 0.

Axiom 4 is very natural. We may interpret it as saying, that for any finite,

consistent set of conditions, there is apriori a non-zero probability that those
1For a formal statement of this observation, we would need to introduce a whole machinery

of first order logic and define a logical structure with Ω as a universe. We shy away from doing

this in order to keep this section more readable, and we redirect anyone interested in how to do

it to Enderton (2001) or any other introduction to mathematical logic.
2Even though it is abstract, the topology introduced in such a way is actually very natural.

To see this, consider for each ω ∈ Ω the function fω : B2 → {−1, 0, 1}, such that fω(x, y) = 1 iff

x � y, fω(x, y) = 0 iff x ∼ y and fω(x, y) = −1 iff x ≺ y. For this representation to make sense,

we equip the set {−1, 0, 1} in the topology, such that ∅, {−1}, {1}, {−1, 1}, {−1, 0, 1} are open,

so with this definition ω ∈ Ω is continuous if and only if fω is. Equipping the whole space of

continuous functions from B2 into {−1, 0, 1} in the standard product topology and embedding

Ω into this space using the identification ω → fω, now gives the same topology.
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conditions are satisfied. Therefore, axiom 4 states, that for any pair x, y ∈ B with

x 6= y the consumer perceives that both x � y and y � x are apriori probable,

though generally not with the same probability. The interpretation of axiom 5

is obvious, though it should be noted that continuity is restricted only to those

elements of B that are not identical. To understand why, we should consider that

µ([x ∼ x]) = 1 while axiom 6 means that for any x′ 6= x we have µ(x′ ∼ x) = 0,

so in this case we have an obvious discontinuity. For this reason, we abuse the

notation a little and often treat µ([x � x]) = 1
2
, making µ continuous everywhere

in the sense of axiom 5. This simplification means we do not have to mention all

the time that x = y is a special case in every fact and definition we state.

Axiom 6 is again introduced to preserve simplicity by allowing us to ignore the

possibility of indifference between alternatives, so we assume that the consumer

does not consider indifference between the choices to be a legitimate possibility. It

is clear that this axiom is related to axiom 3, but it is not necessarily implied by it.

The connection is the other way around, as without axiom 3 it would be impossible

to introduce this axiom on µ, as [x ∼ y] could have a non-empty interior. For the

same reason, it would also be impossible to define the topology on Ω as we did

without axiom 3.

Beside µ we also define µD, which is a conditional measure (given D) on Ω(D)

that corresponds to µ. Definition 2 specifies the connection between µ and µD.

Definition 2. Let µ and some measurable A ⊂ Ω be given and denote K =

KD \ {x ∼ y : x ∼ y ∈ KD}. We define

µD(A) =

0, if A ∩ Ω(D) = ∅,
µ(A∩Ω(K))

Ω(K)
, otherwise.

To understand definition 2, it should be noted that axiom 4 means it is never

the case that µ(Ω(D)) = 0 if there is no such x, y that x ∼ y ∈ KD. This being

the case, it simplifies to the standard definition of conditional probability. If there

are some indifferences in KD however, definition 2 assigns values to sets as if those

indifferences were not there. Those indifference relations are simply ignored when

conditioning, but the support of µD is still restricted to Ω(D), not Ω(K). It should

be noted that by this definition, we have x, y ∈ D =⇒ µD([xRy]) ∈ {0, 1}.

One important implication of this definition is that it explicitly assumes that

the conditional measure, and by extension the preferences provided in section 4, is
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path or history independent, as the only thing that matters are the known relations

provided by KD, which are independent from the order in which the alternatives

were explored. This is contrary to the assertions in the literature on preference

construction (e.g. Payne et al. 1999) and is a consequence of our assumption that

ω∗ exists and is revealed by consumption.

We are mostly interested in the values of µ, µD when they are restricted to sets

of conditions or their conjunctions and disjunctions. This is due to the natural

interpretation of, for example, µD([x � y]) as the probability that x is better than

y conditional on knowledge of D; an alternative and equally correct interpretation

would be as the probability that ω∗ ∈ [x � y]. Therefore we need to ensure that

all the sets of conditions are actually measurable. Proposition 1 gives an obvious

condition that is needed for this to happen.

Proposition 1. Let σB denote a Borel σ-field on Ω and σ′ be an arbitrary σ-field

such that ∀x,y∈B : [x � y] ∈ σ′. Then σB ⊂ σ′.

Proof. It suffices to note that σB = σ({[x � y] : x, y ∈ B}), which is obvious due

to the definition of the topology on Ω.

Proposition 1 means we are from now on only interested in µ that are defined

on a Borel σ-field and we assume it to be fixed and given; it should be noted that

axioms 4-6 are well defined with such a σ-field. We do this even though proposition

1 allows us to take a strictly larger one, as the Borel σ-field is sufficient for our

purposes.3 Note that such a nice σ-field could not be obtained in proposition 1

without a topology closely linked to the information structure.

The following theorem 1 presents a tool that helps in defining measures. It

essentially, states that to define a measure, it is only needed to assign in a coherent

way the values for all the possible conjunctions of conditions. The statement of

the theorem is preceded by some supporting facts and definitions.

Definition 3. Fix U ⊂ Ω be given and let K = {αi : i ∈ I} for arbitrary I ⊂ N

and conjunctions of conditions αi. We say that K is a representation of U if

U =
⋃
i∈I αi.

3We never make use of the fact that our σ-field does not contain any non-Borel sets either,

so the reader is free to choose their own favourite σ-field containing all the Borel sets.
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Note that a representation of any set U ⊂ Ω as U = [
∨m
j=1

∧nj
i=1 xijRijyij] is

not unique, as defining α =
∨m
j=1

∧nj
i=1 xijRijyij clearly means U = [(x � y)∨ (y �

x) ∨ α].

Definition 4. We say that the representation K = {αi : i ∈ I} is disjoint if

i1 6= i2 implies that [αi1 ] ∩ [αi2 ] = ∅.

Definition 5. Let K1, K2 be two representations of some set U ⊂ Ω. We say that

K1 is subordinate to K2 if for all α ∈ K1 there is α′ ∈ K2 such that [α] ⊂ [α′].

Definitions 3–5 formalize basic concepts regarding disjunctions of conjunctions

of conditions. Due to the construction of topology on Ω and definition 2 those are

the sets that are of the most interest to us. The following lemma 1 shows that we

can always represent any set U of this form using disjoint conditions.

Lemma 1. Let U = [
∨m
j=1

∧nj
i=1 xijRijyij] with Rij ∈ {�,�,∼}. There ex-

ist such numbers m′, n′j and for all pairs j ≤ m′, i ≤ nj some choice alter-

natives (x′ij, y
′
ij) ∈ B2 and relations R′ij ∈ {�,�,∼} such that representation

U = [
∨m′

j=1

∧n′j
i=1 x

′
ijR
′
ijy
′
ij] is disjoint.

Proof. We proceed by induction on m, which is the number of conjunctions of

conditions in the representation of U . Let m = 1. Then U = [
∧n1

i=1 xi1Ri1yi1] and

therefore the thesis is trivially satisfied. We just need to prove the implication

that if the thesis is satisfied for some m, then it is satisfied for m+ 1.

Assume, that for any U = [
∨m
j=1

∧nj
i=1 xijRijyij] we have a disjoint represen-

tation as U = [
∨m′

j=1

∧n′j
i=1 x

′
ijR
′
ijy
′
ij]. Now assume U = [

∨m+1
j=1

∧nj
i=1 xijRijyij]. By

assumption, we have that U = [
∨m′

j=1

∧n′j
i=1 x

′
ijR
′
ijy
′
ij∨
∧nm+1

i=1 xim+1Rim+1yim+1]. De-

note γ =
∧nm+1

i=1 xim+1Rim+1yim+1 ∧
∧m′

j=1 ¬αj, where ¬αj =
∨n′j
i=1 ¬x′ijR′ijy′ij and

¬xRy is, for R respectively �,�,∼, given by y � x, y � x and (y � x ∨ x � y),

therefore γ is of the required form.

As every logical formula can be rewritten in disjunctive normal form, there

exist some (αk)
mk
k=1 such that αk =

∧n′k
i=1 x

′
ikR

′
iky
′
ik and γ =

∨mk
k=1 αk. To finish

the proof, it suffices to show that each αk is disjoint with each αj, which follows

trivially, as by construction we can show that for each k, j there exists some i and

a logical formula φ such that we can represent αk = φ ∧ ¬x′ijR′ijy′ij.

17



Definitions 6–8 define elementary operations on conjunctions of conditions and

representations, that are necessary for the proof of the main result of this section.

Definition 6. Let α =
∧n
i=1 xiRiyi be a logical formula and fix x, y ∈ B. We

call a pair of logical formulas α ∧ (x � y), α ∧ (y � x) the partition of α by x, y.

Moreover, let a finite disjoint representation K of some U ⊂ Ω be given, together

with a finite set A ⊂ B × B. We say K̃ is a full partition of K with respect to A

if K̃ represents U and every α′ ∈ K̃ is of form α′ = α ∧
(∧

(x,y)∈A xRxyy
)
where

α ∈ K and Rxy ∈ {�,≺}.

Definition 7. Let logical formulas γ1, γ2 of form α∧ (x � y), α∧ (y � x) be given.

We call logical formula α the merger of γ1, γ2. Moreover we say K1 = {α} is a

full merger of K2 = {α1, . . . , αn} for n > 1 if K2 is a disjoint representation of

U = [α].

Definition 8. Let conjunction of conditions α =
∧n
i=1 xi � yi and a finite set A ⊂

B × B be given. We define restriction of α to A as rest(α,A) =
∧

(xi,yi)∈A xi � yi.

The following lemma 2 shows that any infinite representation of U ⊂ Ω can

be obtained from some finite representation using a sequence of partitions and

mergers and lemma 3 shows that for two different representations of U , a very

natural condition on the values assigned by some set function µ0 suffices so that

the value of µ0(U) is independent from the choice of the representation of U .

Lemma 2. Let U ⊂ Ω and fix two disjoint representations K0 = {α1, . . . , αn}

and K = {α′j : j ∈ N+} of U such that K is subordinate to K0. There exists a

sequence (Kl)l∈N of representations such that
⋂∞
k=0

⋃∞
l=kKl = K and that Kl+1 is

obtained from Kl using only partitions and mergers (full or otherwise).

Proof. Fix U , K0 andK as in the statement of the lemma, and assume all elements

of K0 are enumerated, meaning that K0 = {α1, . . . , αn}. We prove this lemma

constructively, by providing a procedure to obtain a sequence of representations

that satisfy the conditions of the lemma. For each l ∈ N we do the following steps.

Fix αi ∈ Kl, with i = 1 in case l = 1. We also fix j, starting with j = 1 for l = 1.

case l = 1 Define Kαi = {α′ ∈ K : [α′] ⊂ [αi]} and Kαi(n) = {α′ ∈ Kαi : l(α′) =

n}. Fix n to be a smallest such number that Kαi(n) 6= ∅ and denote

Dαi(n) =
⋃

α′∈Kαi (n)

cp(α′) \ cp(αi),
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so that Dαi(n) is a set of points on which additional conditions in Kαi(n) are

imposed. Note, that Dαi(n) is finite. Define KFP
αi

to be a full partition of α with

respect to Dαi(n) and define Krest
αi

= {rest(α′, Dαi(n) ∪ cp(αi)) : α′ ∈ Kαi}.

As both KFP
αi
, Krest

αi
are finite and disjoint and KFP

αi
is subordinate to Krest

αi
, we

can obtain each element α′ ∈ Krest
αi

by a full merger of all elements of KFP
αi

that

satisfy [α′′] ⊂ [α]. As a result, we can obtain Krest
αi

from α using only partitions

and mergers.

Finally, define Kl+1 = Kl ∪Krest
αi
\ {αi}. We do not change the enumeration

of elements in Kl+1. As such, all elements of Kl+1 ∩ Krest
αi

are not enumerated

(for now), meaning that there is no i′ such that αi′ ∈ Kl+1 ∩Krest
αi

. Note that by

construction Kαi(n) ⊂ Kl+1, Kl+1 is disjoint and K is subordinate to Kl+1.

Now, if αi+1 ∈ Kl+1, increase i, l by one and perform the same operations as

we did up to this point. In the other case, increase l and j by one, set i = 1 and

enumerate all elements of Kl.

Note, that clearly if α′ ∈ K and α′ ∈ Kl for any l then also α′ ∈ Kl+1.

Therefore in order to finish the proof, we just need show that every element α′ ∈ K

is obtained as an element of Kl for some l. Let [α′] ⊂ [α] for some α ∈ K0 and fix

nα′ = |{n ≤ l(α′) : Kα(n) 6= ∅}|.

We claim, that we obtain α′ as an element of Kl for some l such that j = nα′ .

Indeed, if nα′ = 1 we have already shown it. Consider nα′ > 1. There is i such

that [α′] ⊂ [αi] for j = 1 and there is α′′ ∈ Krest
αi

such that [α′] ⊂ [α′′]. As

Kα′′ ⊂ Kαi \ Kαi(n) where n is the smallest number such that Kαi(n) 6= ∅ we

get that |{n ≤ l(α′) : Kα′′(n) 6= ∅}| < nα′ , proving our claim. As for each j we

perform a finite number of partitions and mergers, the proof is finished.

Lemma 3. Fix two finite disjoint representations K1 = {α1, . . . , αm1} and K2 =

{α′1, . . . , α′m2
} of some set A ⊂ Ω. Assume that set function

µ0 : {A ⊂ Ω : ∃xi,yi,n A = [
n∧
i=1

xi � yi]} → [0, 1]

that for any conjunction of conditions α satisfies µ0([α ∧ (x � y)]) + µ0([α ∧ (y �

x)]) = µ0([α]) is given. Then
∑m1

j=1 µ0([αj]) =
∑m2

j=1 µ0([α′j]).

Proof. By the condition that µ0([α ∧ x � y]) + µ0([α ∧ y � x]) = µ0([α]) the

values of µ0 are assigned in such a way that replacing any αj0 or α′j0 by its
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arbitrary partition, for example replacing αj0 by α1
j0
, α2

j0
gives

∑m1

j=1 µ0([αj]) =

µ0([α1
j0

])+µ0([α2
j0

])+
∑m1

j 6=j0 µ0([αj]). Therefore it suffices to show, that there exists

a finite sequence of partitions from both K1 and K2 to some K = {αl11 , . . . , αl1k1},

meaning we can obtain the same finite subset of formulas as a result of the recursive

partitioning of K1 and K2. It suffices to define

D =

m1⋃
j=1

cp(αj) ∪
m2⋃
j′=1

cp(α′j′),

and fix K to be a representation obtained by partitioning of all formulas in K1 on

all elements of D. Obviously, partitioning all elements of K2 on all elements of D

we also obtain K and the proof is finished.

Now we are ready to prove the main theorem of this section.

Theorem 1. Assume, that for all n ∈ N+ and all sequences (xi, yi)
n
i=1 ∈ B × B

the values of set function µ0([
∧n
i=1 xi � yi]) > 0 are given and satisfy

µ0([
n−1∧
i=1

xi � yi ∧ xi � yi]) + µ0([
n−1∧
i=1

xi � yi ∧ yi � xi]) = µ0([
n−1∧
i=1

xi � yi),

and

µ0([x � y]) + µ0([y � x]) = 1.

There then exists a unique probabilistic measure µ defined on the whole Borel σ-

field of Ω such that for all conjunctions of conditions we have µ0([
∧n
i=1 xi � yi]) =

µ([
∧n
i=1 xi � yi]).

Proof. Define a family of sets

A =

{
[
m∨
j=1

nj∧
i=1

xijRijyij] : xij, yij ∈ B, Rij ∈ {�,�,∼}

}
∪ ∅.

We show, that A is an algebra of sets. It contains an empty set, and is obviously

closed under binary unions. Moreover, it is closed under complementation, as

[
m∨
j=1

nj∧
i=1

xijRijyij]\[
m′∨
j=1

n′j∧
i=1

x′ijR
′
ijy
′
ij] =

 m∨
j=1

 nj∧
i=1

xijRijyij ∧
m′∧
j=1

n′j∨
i=1

(
¬x′ijR′ijy′ij

) = A,

where ¬x′ij � y′ij = y′ij � x′ij, ¬x′ij � y′ij = y′ij � x′ij and ¬x′ij ∼ y′ij = y′ij �

x′ij ∨ x′ij � y′ij. As every logical formula can be stated in disjunctive normal form,

A ∈ A and we find that A is an algebra of sets.
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We first extend µ0 to the whole A as follows: define µ0([
∧n
i=1 xiRiyi]) = 0 if any

Ri =∼ and [
∧n
i=1 xiRiyi] = [

∧n
i=1 xi � yi] otherwise. Moreover from proposition

1 we get that each A ∈ A can be represented some [
∨m
j=1

∧nj
i=1 xij � yij] that is

disjoint. Therefore we define µ0(A) =
∑m

j=1 µ0([
∧nj
i=1 xij � yij]). Note that this

is well defined due to lemma 3, which we can apply due to the condition in the

statement of the theorem. This is therefore a unique extension of µ0 to A such

that the extended µ0 is finitely additive.

We need to show, that µ0 is a pre-measure on A. Fix some A ∈ A and let

(Aj)
∞
j=1, Aj ∈ A be disjoint and such that

⋃∞
j=1Aj = A. From proposition 1 and

finite additivity of µ0 we can assume without loss of generality that Aj are of form

αj = [
∧nj
i=1 xij � yij]. Also, denote by K the representation of A corresponding to

Aj’s, so that K = {αj : j ∈ N+}. We need to show that µ0(A) =
∑∞

j=1 µ0(Aj).

Let K̃0 be an arbitrary disjoint representation of A. By lemma 1 some disjoint

representation exists. Define D =
⋃
α∈K̃0

cp(α) and take K0 = {rest(α) : α ∈ K}.

Clearly, K0 is finite and K is subordinate to K0. Therefore from lemma 2 we have

that there exist a sequence of representations (K l)l∈N such that K l+1 is obtained

from Kl using mergers and partitions only, and that
⋂∞
k=0

⋃∞
l=kK

l = K, so the

limit of this sequence of recursive partitions and mergers is K. Note, that by finite

additivity of µ0 mergers and partitions have no impact, meaning that for every

l ∈ N ∑
α∈Kl

µ0([α]) = µ0(A).

Now consider two sequencesml =
∑

α∈Kl µ0([α]) andml = µ0([
⋂l
k=0

⋃l
k′=kK

k′ ]).

It is clear that both ml and ml are constant and equal to µ0(A). Therefore

liml→∞ml = µ0(A) = liml→∞m
l. It now suffices to note, that liml→∞ml =∑

α∈K µ0([α]) and liml→∞m
l = liml→∞ µ0([

⋂l
k=0

⋃l
k′=kK

k′ ]) = µ0(
⋃
α∈K [α]) =

µ0(A). Therefore µ0 is a pre-measure on A.

As A is an algebra of sets and µ0 is a finite pre-measure that is uniquely

extended to A from given values, then by Caratheodory’s extension theorem (e.g.

Ash 1999), it follows, that there exists a unique σ-finite measure µ that extends

µ0 to the whole σ-field generated by A. As A contains the generating set of the

topology on Ω, the σ-field generated by it must contain all open sets, and as a

consequence all Borel sets.

Now to finish the proof, it suffices to show that µ is probabilistic, but this
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follows trivially from the condition that µ0([x � y]) + µ0([y � x]) = 1.

Theorem 1 is very important. It shows that we can define measures µ on

the whole Ω by their values on sets defined by strict conjunctions of conditions

only. As those are precisely the sets that are of interest to us, this is a very

nice property to have. Notably, the values of the measure on those sets also

determine the indirect learning of the consumer. In order to see it, consider that

indirect learning essentially describes the correlation between relations, meaning

that if from learning that x1 � y1 we indirectly learn that probably x2 � y2, it

is due to the fact, that x1 � y1 and x2 � y2 are correlated, that is the majority

(with respect to µ) of preferences in Ω([x1 � y1]) also satisfy x2 � y2, whereas

conversely the majority in Ω([y1 � x1]) would satisfy y2 � x2. Specification of

µ0([x1 � y1 ∧ x2 � y2]) with µ0([x1 � y1]) and µ0([x2 � y2]) already specified

means doing precisely that – specifying the strength of the correlation between

these two relations. As a consequence, theorem 1 shows that there are no bounds

whatsoever on indirect learning in our model.

Theorem 1 also allows us to define the measures using conditional probabilities

that we can specify independently, as shown by corollary 1.

Corollary 1. Let for all x, y ∈ B and for all sets of conditions K values of

µ0
K([x � y]) be given and satisfy

µ0
K([x � y]) + µ0

K([y � x]) = 1, µ0
∅([x � y]) + µ0

∅([y � x]) = 1.

There exists a unique probabilistic measure µ defined on the whole Borel σ-field,

such that for all x, y we have µ0
∅([x � y]) = µ([x � y]) and µ0

K([x � y]) = µK([x �

y]).

Proof. Note that µ([
∧
α∈K α ∧ x � y]) = µK([x � y])µ(Ω(K)). Now for it to

follow from theorem 1 we just need to show that we are able to calculate µ(Ω(K))

using values of µK([x � y]) only. It suffices to do this inductively. Let K =

{x1 � x2}. Then µ(Ω(K)) = µ∅([x1 � x2]). Now assume we are given µ(Ω(K))

for K = {x1 � · · · � xn} and let K ′ = {x1 � · · · � xn+1 � · · · � xn}. From

definition 2 we have µ(Ω(K ′)) = µ(Ω(K))µK([xj � xn+1 ∧ xn+1 � xj+1]), where

µK([xj � xn+1 ∧ xn+1 � xj+1]) = 1 − µK([xn+1 � xj ∨ xj+1 � xn+1]). Given that

xj � xj+1 ∈ K, the sets [xn+1 � xj], [xj+1 � xn+1] are disjoint in Ω(K). Therefore
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µK([xj � xn+1 ∧ xn+1 � xj+1]) = 1 − µK([xn+1 � xj]) − µK([xj+1 � xn+1]) and

the proof is finished.

Note, that the layers given by the sets of form [x � y] on which we define

µ0
D in corollary 1 are independent of each other for different D. Indeed, the only

condition is, that µ0
D([x � y]) + µ0

D([y � x]) = 1. Therefore we can sometimes

restrict our attention to some fixed D and consider µD as a probability distribution

on B2, ignoring what happens otherwise. Corollary 6 says precisely that we can

then “glue” those distributions into a Borel measure on Ω.

Even though neither of theorem 1 or corollary 1 actually provide us with a

proof that some probabilistic measure µ on Ω satisfying axioms 4-6 actually exists

(this is finally proven in section 4 by theorem 2), these results give us the tools for

defining such measures. In a static case we do not use the whole measure µ much,

with conditional measures for some given D proving sufficient for our purposes.

However, theorem 1 is of paramount importance, as it shows that we can think of

consumer choices given all possible D as being generated by a common decision

process that is informed by a common probability measure that glues together all

the conditional measures.

The conditions given by theorem 1 for which assignments of conditional mea-

sures we can glue together with different possible D are very weak. As an upside,

this allows us through the following sections to concentrate on the constructions

of µD with minimal regard as to how they correspond to one another. A downside

is that certainly not all assignments of µD are reasonable as representations of

changes in the perception by the consumer of their own preferences. Any further

work on this topic that extends beyond the static case we currently consider should

consider imposing additional restrictions on µ in that regard.

4 Conditional preferences

In this section, we turn towards the question of how a consumer equipped with

a Borel probability measure µ on Ω perceives their preferences. We focus on the

static setting, so we assume D is fixed throughout. As noted before, we also leave

aside choice functions, and explore instead different decision modes. Moreover,
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theorem 1 lets us mostly ignore µ and focus on µD only.

As a basic distinction, we assume that the consumer has two conflicting mo-

tivations that we call the consumptional and the experimental: consumptional

motivation comes from the immediate satisfaction from the consumer’s choice,

and experimental motivation comes from the consumer getting to know their real

preferences better. For now, we consider purely the consumptional motivation. It

seems natural that the consumer who is preoccupied with their immediate satis-

faction from consumption should try to guess their real preferences ω∗. The most

obvious way to do this is given by definition 9.

Definition 9. Let µD be given. We call relation �D (also denoted ωD)) defined

by x �D y ⇐⇒ µD([x � y]) ≥ 1
2
a conditional preference relation, which is

conditional on D. Accordingly, for a given preference relation �D we say that µD

such that x �D y ⇐⇒ µD([x � y]) ≥ 1
2
represents �D as conditional preferences,

that are conditional on D.

When D is fixed we simply say that the conditional preferences of the consumer

are given by ωD, and when the context is clear we simply say that µD represents

ωD. Even though we consider other decision modes, conditional preferences are

the primary one, and the other modes originate from the study of the properties

of the conditional preferences. We perceive ωD to be the most similar approach

to the substantively rational approach to consumer choice. Note that for the time

being we do not know whether ωD is actually a preference relation. The following

definitions, 10 and 11, are of primary importance for the study of conditional

preferences.

Definition 10. We say that µD is coherent if (µD([x � y]) ≥ 1
2
) =⇒ (∀z∈B :

µD([x � z]) ≥ µD([y � z])).

Definition 11. We say that µD is weakly coherent if (µD([x � y]) = 1
2
) =⇒

(∀z∈B : µD([x � z]) ≥ 1
2
⇐⇒ µD([y � z]) ≥ 1

2
).

The coherence of µD is a property that would be nice to have, as it means

that the notion of how likely it is that x is better than y has some significance.

For incoherent measures, the only thing that matters is whether this probability

is greater or smaller than half. As a consequence we can compare alternative

choices indirectly for coherent measures, using any z ∈ B as a reference point.

This observation is formally stated by proposition 2.
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Proposition 2. Let z ∈ B and �z (also denoted ωz) be defined as x �z y ⇐⇒

µD([x � z]) ≥ µD([y � z]). The following are all true.

1. Let z ∈ B. Then ωz is complete, reflexive, transitive and continuous.

2. Let z ∈ B. Then ∀z′∈B : ωz = ωz′ if and only if µD is coherent.

3. We have that ∀z∈B : ωz = ωD if and only if µD is coherent.

Proof. The first point of the proposition is obvious, as uz(x) = µD([x � z]) is

a continuous function4 that clearly represents ωz and Debreu’s (1954) theorem

states that such a utility function exists if and only if ωz is complete, reflexive,

transitive and continuous.

We now prove point 2. Assume µD is coherent and fix arbitrary x, y ∈ B such

that µD([x � y]) ≥ 1
2
. Coherence means that for any z1, z2 ∈ B we have that

uz1(x) ≥ uz1(y) and uz2(x) ≥ uz2(y), and therefore ωz1 = ωz2 . Now assume that

∀z1,z2∈B : ωz1 = ωz2 , and we show that µD is coherent. Again fix x, y ∈ B such

that µD([x � y]) ≥ 1
2
. Note that for any z ∈ B, uz and uy represent the same

preferences. As we assume that uy(x) ≥ uy(y), we therefore get that uz(x) ≥ uz(y),

and therefore coherence.

Finally, we prove 3. Assume that ∀z∈B : ωz = ωD. Therefore especially for

any z1, z2 ∈ B we have ωz1 = ωz2 , therefore following point 2 µD is coherent. Now

assume µD is coherent, so from point 2 for all z1, z2 ∈ B we have that ωz1 = ωz2 .

Therefore especially for any z we have ωy = ωz and µD([x � y]) ≥ 1
2

=⇒ uy(x) ≥

uy(y), and therefore ∀z∈B : ωz = ωD.

The relation ωz defined by proposition 2, which we call the indirect preference

relation (with respect to D and z, omitting D if it is clear from context) is the

second decision mode to be introduced to our study. Following proposition 2,

the indirect choice of an alternative using z ∈ B as a reference point is both

independent from z and equivalent to the choice using direct comparisons given

by ωD if and only if µD is coherent. This is an important observation, as it is easy

to give an example of a situation, where it could be considered reasonable to use

indirect choice.
4As noted in section 3 function uz is continuous due to our definition that µD([x � x]) = 1

2 .
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Example 2. One especially fitting example concerns a consumer who is very

averse to uncertainty. Consider a foreign traveller, who comes to a shoddy-looking

roadside restaurant. Every dish on the menu is new to them, but they can under-

stand the descriptions. They are hungry, and just want to be sure that whatever

they order, is going to be edible. Edible is defined as anything that is at least

as good as some known dish x. The consumer’s choice function is therefore, to

maximise the probability of their choice being as good as x. Formally, denoting

the menu in the restaurant as A, this function is argmaxy∈A{µD([y � x])}. The

solution to the choice problem, is therefore clearly given by the maximisation of

ux on A. Note that if the consumer’s µD is incoherent, it is possible that their

choice will be different from the one that they would make if they used ωD, as they

might choose to eat fish and chips rather than beef guts even though they suspect

beef guts will be actually better then fish and chips, just because there is also a

higher probability that the beef guts will be completely inedible. Moreover, note

that if µD is incoherent, the choice is reference point dependent, so it is entirely

possible, that if the consumer used some other x′, even such that x′ ∼D x, they

would consider beef guts to be actually less risky than fish and chips, and change

their choice accordingly, or be unable to decide if they actually tried to consider

both reference points.

The utility functions uz representing ωz that we used in the proof of proposition

2 are a very useful tool to work with, so we define them formally in definition 12.

Definition 12. Let z ∈ B be given. We denote uz(x) = µD([x � z]) and call this

uz an indirect utility function with respect to z, and we call z its reference point.

As example 2 shows, coherence would be a very nice property to have, since

with a coherent measure it would essentially be pretty hard to think of an example

where an intuitively rational consumer chooses differently to how ωD dictates.

However it is not to be. As shown by proposition 3, µD are almost never coherent.

Proposition 3. Let x1, x2, x3 ∈ D such that x1 � x2, x2 � x3 ∈ KD. Then µD is

not coherent.

Proof. Fix D as in the statement of the theorem. As µD([x1 � x3]) = 1 and

µD([x2 � x3]) = 1 from continuity for any disjoint open ball B(x1, r1), B(x2, r2) ⊂

B and for any z2 ∈ B(x2, r2) there exists z1 ∈ B(x1, r1) such that µD([z2 �
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x3]) > µD([z1 � x3]). Therefore from coherence µD([z2 � z1]) ≥ 1
2
. However

µD([x1 � x2]) = 1 and therefore from continuity there exist disjoint open balls

B(x1, r1), B(x2, r2) ⊂ B so that for all z1 ∈ B(x1, r1), z2 ∈ B(x2, r2) we have

µD([z1 � z2]) > 1
2
, which is a contradiction.

Note that beside showing that µD can only possibly be coherent in the very

special case of |{x � y : x, y ∈ D}| ≤ 1, the proof of proposition 3 hints to-

wards the source of this lack of coherence. Incoherence is introduced to µD by

experience, meaning that when x1 � x2 ∈ KD then µD([x1 � x2]) = 1, combined

with the continuity of µD. Combined with proposition 2 we find as an additional

consequence of proposition 3 that for |D| > 2 there always exists such z1, z2 ∈ B

such that ωD 6= ωz1 and ωz1 6= ωz2 .

Proposition 2 informs us that for a coherent µD, relation ωD is a preference

relation, meaning it is complete, transitive, reflexive and continuous. However, it

is not a necessary condition, as shown by proposition 4.

Proposition 4. Conditional preferences ωD are transitive if and only if µD is

weakly coherent.

Proof. Note that ωD is transitive if and only if its lower contour sets LCSx = {y ∈

B : x �D y} are such that x1 �D x2 ⇐⇒ LCSx2 ⊂ LCSx1 . As weak coherence is a

strictly weaker condition, a transitive ωD clearly implies weak coherence. Therefore

we only need to prove that the weak coherence of µD implies the transitivity of

ωD.

Fix some x, y ∈ B such that x �D y and assume there exists such x′ ≺D y

such that x′ �D x. Without a loss of generality, we can assume that x′ ∼D x, as

if x′ �D x and y �D x′ we have from the continuity of µD that there must exist

some x′′ on the path connecting x′ and y such that x′′ ∼D x and x′′ ≺ y (such a

path exists, as B is connected by assumption). Now we have that µD(x � x′) = 1
2

and µD(x′ � y) < 1
2
, therefore by weak coherence it must be that µD(x � y) < 1

2
,

which contradicts the assumption that x �D y.

From proposition 4 we know that the transitivity of ωD is equivalent to weak

coherence. To understand better what weak coherence actually means, we contrast
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it with normal, meaning not weak, coherence. It may be recalled that coherence

essentially means, that for all the reference points z ∈ B the rankings of alternative

choices given by indirect comparisons with z are the same. Therefore if uz1(x) >

uz1(y) it must be that uz2(x) > uz2(y). With weak coherence, this is no longer the

case. The prime reason for this is that weak coherence is only binding for the case

of indifferent goods, so for it to say anything at all about the rankings above, it

would have to be that z1 ∼D z2. Moreover, even for z1 ∼D z2 it actually allows for

the case where uz1(x) > uz1(y) and uz2(x) < uz2(y). The only situation it prohibits

is when some alternative choices switch sides with relation to the indifference

curve, so it is impossible to have uz1(x) > 1
2
and uz2(x) ≤ 1

2
. Note that this differs

from previous considerations, as in the prohibited situation we only consider one

alternative choice x instead of both alternatives x, y. This is very much the essence

of the difference between coherence and weak coherence. Choosing some reference

points z1, z2, coherence demands that the relations between any pair of alternatives

x, y is the same when reference points are changed. However, weak coherence is

only interested in the relations between one alternative and the reference point

itself.

From the viewpoint of indirect comparisons, the transitivity of ωD for a weakly

coherent µD is quite peculiar. To illustrate this point further, consider the follow-

ing, example 3.

Example 3. Assume a consumer is interested in choosing a movie to watch,

and narrows the list down to three titles only: Godzilla, Titanic and Gone with

the Wind, denoted respectively as G, T and W . For a fully coherent µD, the

indirect rankings must be equal, so assume therefore that uX(W ) < uX(T ) <

uX(G) for any X ∈ {G, T,W}. However, those rankings might be different in a

weakly coherent case, and we might for example have uW (W ) < uW (G) < uW (T ),

uT (W ) < uT (T ) < uT (G) and uG(T ) < uG(W ) < uG(G). The preference relation

ωD resulting from those rankings is indeed transitive and gives the ranking G �

T � W just as in the coherent case.

Note that beside the distortion introduced by experience there might be a

good, interpretable reason for these differences between the rankings. In a direct

comparison between Godzilla and Titanic for example, the consumer may prefer

Godzilla as they consider it a less boring alternative, but when they make the
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comparison using Gone with the Wind as the reference point, choosing Godzilla

might feel a little barbaric and even though that film is still preferable to a really

boring Gone with the Wind it might suddenly seem a less appealing alternative

than Titanic. In some situations, such as when the consumer is influenced by

advertising that suggests Gone with the Wind should be taken as the reference

point, it certainly feels plausible that even though ωD is transitive, the consumer

might actually use uW as a choice function and pick Titanic instead.

Note that we still do not know whether any weakly coherent measure µD ac-

tually exists. However, before we can answer this question in the affirmative in

theorem 2, we show in proposition 5 that if ωD is transitive, then we can easily

give a utility function that represent it.

Proposition 5. Let ωD and the weakly coherent µD representing it be given. Then

uD(x) = λ({y ∈ B : x � y})

is a utility function representing ωD.

Proof. As ωD is transitive z1 � z2 implies that the lower contour sets LCSx =

{y ∈ B : x � y} satisfy LCSz2 ⊂ LCSz1 . Moreover, if z1 � z2 then there exists

some open ball B ⊂ B such that B ⊂ LCSz1 and B ∩LCSz2 = ∅. Therefore, from

the definition of measure λ on B, λ(LCSz1) > λ(LCSz2) and as a consequence uD

represents ωD.

Note that the characterisation given by proposition 5 is clearly not unique, as

any function defined on the lower counter sets of the relation ωD that is strictly

increasing with respect to the inclusion of those sets represents ωD. However, the

utility function given in this proposition is quite an interesting choice function in

itself, since if µD is not even weakly coherent, and ωD is not a preference relation,

uD still represents some preference relation that is consistent with ωD on any

subset of B such that ωD restricted to this subset is transitive. We denote the

preferences represented by the utility function uD as ωB. This preference relation

is also quite intuitive, as this uD essentially states that x is better than y if and

only if x is preferred (with respect to ωD) to a larger subset of alternative choices

than y, no matter the direct comparison between x and y; this can be understood
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as a majority vote by the indirect utility functions uz. As such, this is another case

of indirect comparison between alternatives, but this time it is one that always

results in a well–defined, single preference relation on the whole B, so even though

ωD is conceptually easier and intuitively more viable, ωB is actually more general

and has nicer properties when the measure is not weakly coherent.

Note, however, that ωB can be sensitive to changes in the set of alternative

choices. Even though we assume that B is known and preferences are defined on

the whole B, there are actually many situations where this might not be the case.

In these cases, we might actually want to use ωB instead of ωD, in order to account

for the menu effects. To visualise this better, consider the further generalisation

of ωB provided next by definition 13 and example 4.

Definition 13. Let A ⊂ B be such that λ(A) > 0. We denote by �A (also, ωA)

the menu dependent preference relation, defined as x �A y ⇐⇒ λ({z ∈ A : x �

z}) ≥ λ({z ∈ A : y � z}).

Example 4. Consider the example of a consumer who is faced with a choice of a

new washing machine and is very much unaware of any of the sophisticated features

that might be in new models. If this consumer goes first to some old–fashioned

shop with a very limited assortment of older and less sophisticated models, we

might reasonably expect that it would not cross the consumer’s mind that there

might be some very different alternative choices. It would therefore be reasonable

to assume that this consumer might evaluate all the alternatives from set A, which

consists of all the washing machines that they can imagine at the moment, which

might be the set of washing machines available in the shop. Accordingly, the

consumer uses ωA as the preference relation when choosing, and so we assume

that they choose washing machine 1. However, the consumer later enters a larger,

more upmarket shop that has a lot of new, expensive, sophisticated machines

in addition to everything that was in the previous shop an this enriches their

knowledge of the possibilities available to an extended set A′ such that A ⊂ A′.

Even if those new, more sophisticated machines are irrelevant alternatives (but

µD is not weakly coherent) it might be that the consumer now chooses machine

2 that was also present in the previous shop but was not chosen, just because

machine 1 might very well be perceived as worse in direct comparison with the

new and more sophisticated machines, while machine 2 might seem better than
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them. This situation and the choice of the consumer as described in this example

seem plausible, and can be accounted for by using ωA.

We are now ready to go back to the question of whether the weakly coherent

measures µD actually exist, which is the main result of this section, given by

theorem 2 below. It is preceded by supplementary definitions 14-16 and lemma 4,

which are mostly of technical importance

Definition 14. We denote by Diag(ω),Diag+(ω),Diag−(ω) ⊂ B × B sets of re-

spectively diagonal, upper diagonal and lower diagonal elements of relation ω, that

is

Diag(ω) = {(x, y) ∈ B × B : x ∼ω y},

Diag+(ω) = {(x, y) ∈ B × B : x �ω y},

Diag−(ω) = {(x, y) ∈ B × B : x ≺ω y}.

Definition 15. Let µD be given. We say that a measure µ′D is obtained from µD

by a disturbance (µ′, w) if µ′ is a probability measure defined on Ω(D), function

w′ : B2 → [0, 1] satisfy w′(x, y) = w′(y, x) and

µ′D([x � y]) = (1− w′(x, y))µD([x � y]) + w′(x, y)µ′([x � y]).

Definition 16. Let µD be given. We say that disturbance (µ′, w) does not disturb

the diagonal, if and only if for A = supp(w′) we have

1. A ∩Diag(ωD) = ∅,

2. (x, y) ∈ A ∩ Diag+(ωD) =⇒ µ′([x � y]) ≥ 1
2
, with equality only for

w′(x, y) < 1,

3. (x, y) ∈ A ∩ Diag−(ωD) =⇒ µ′([x � y]) ≤ 1
2
, with equality only for

w′(x, y) < 1.

If this is not the case, we say that (µ′, w′) disturb the diagonal.

Lemma 4. Let µD be given and µ′D be obtained from µD by a disturbance (µ′, w′)

that does not disturb the diagonal. Then µ′D also represents ωD.

Proof. First, let µ′D be obtained from µD without disturbing the diagonal and

denote by ω′D (or �D′) the relation given by definition 9 applied to µ′D. Fix an
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arbitrary x ∈ B. Following definition 16 we have A ∩ {y ∈ B : y ∼D x} = ∅.

Therefore x ∼D y =⇒ x ∼D′ y. Now let y ∈ B be such that y �D x. If (y, x) /∈

supp(w′) then obviously y �D′ x, and so therefore assume that (y, x) ∈ supp(w′).

Now by definition of a disturbance

µ′D([y � x]) = (1− w′(y, x))µD([y � x]) + w′(y, x)µ′([y � x]).

By assumption y �D x we have µD([y � x]) > 1
2
. Moreover following definition

16 we have µ′([y � x]) ≥ 1
2
. Therefore µ′D([y � x]) > 1

2
and y �D′ x. As the case

with x �D y is symmetric to this one, ωD = ω′D and therefore µ′D also represents

ωD.

Theorem 2. Let D be fixed. For any given ω ∈ Ω(D) there exists some weakly

coherent measure µD representing ω. Moreover, for some fixed ωD ∈ Ω(D), there

is a µD representing ωD that can be represented as

µD([x � y]) =
n∑
i=1

wi(x, y)µi([x � y]) + (1−
n∑
i=1

wi(x, y))µ∗([x � y]),

where (µi, wi) are disturbances that do not disrupt the diagonal that for all x, y ∈ B

satisfy
∑n

i=1wi(x, y) ≤ 1 and µ∗ is a coherent measure on Ω representing ωD.

Proof. Due to corollary 1 we can define µD only on the sets of the form [x � y],

knowing that we can always define other conditional measures in such a way, that

there exists some µ defined on the whole Borel σ-field such that µD is a conditional

measure for µ when conditioned of D. Therefore, we can restrict our attention to

values of µD on the sets [x � y] only.

As ωD ∈ Ω(D) there is a continuous utility function that represents it. Let u be

this utility function, and denote by x∗, y∗ some maximum and minimum elements

for relation ωD. As B is compact and ωD is continuous, such x∗, y∗ exist. Define

µ∗([x � y]) = 1
2

+ u(x)−u(y)
2(u(x∗)−u(y∗))

. Clearly this µ∗([x � y]) ≥ 1
2
⇐⇒ u(x) ≥ u(y),

and therefore it represents ωD on Ω. Moreover, for any z ∈ B we have µ∗([x �

z]) ≥ µ∗([y � z]) ⇐⇒ u(x) ≥ u(y) and therefore this µ∗ is coherent. However, it

cannot represent ωD on Ω(D) as it is not restricted to Ω(D), so for d1 � d2 ∈ KD
does not imply µ∗([d1 � d2]) = 1 unless d1 ∼D x∗ and d2 ∼D y∗. Note however,

that from definition 9 we have d1 � d2 ∈ KD ⇐⇒ d1 �D d2, and therefore

µ∗([d1 � d2]) > 1
2
.
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By lemma 4 if we disturb µ∗ without disturbing the diagonal, the disturbed

measure also represents ωD. We now show that there is a sequence (µi, wi)
n
i=1 of dis-

turbances that does not disturb the diagonal, such that (1−
∑n

i=1wi(x, y))µ∗([x �

y]) +
∑n

i=1w(x, y)µi([x � y]) is equal to 0 whenever y � x ∈ KD. Due to axiom

6 we can assume without loss of generality that KD consists of strict preference

relations only and we denote all known relations as KD = {xi � yi : i ≤ n}.

For all i fix some pairwise disjoint Bi = B((xi, yi), ri)Diag+(ωD) and define

wi(x, y) = max

{
1− d((x, y), (xi, yi))

ri
, 1− d((x, y), (yi, xi))

ri
, 0

}
,

ui(x) =


1 if u(x) > u(xi),

0 if u(x) < u(yi),

u(x)−u(yi)
u(xi)−u(yi)

otherwise.

It suffices to take µi([x � y]) = 1
2

+ u(x)+u(y)
2

. By construction each distur-

bance (µi, wi) does not disturb the diagonal and as a result µD([x � y]) =

(1−
∑n

i=1 wi(x, y))µ∗([x � y]) +
∑n

i=1w(x, y)µi([x � y]) represents ωD. Moreover

as wi(xi, yi) = 1 and µi([xi � yi]) = 1 so µ is restricted to Ω(D). As additionally

µD is of the requested form, the proof is finished.

Theorem 2 shows something more than just the existence of a weakly coherent

µD. First, it shows that by choosing µD we can represent any ω ∈ Ω(D) as con-

ditional preferences, meaning any preferences in Ω(D) are permissible. Secondly,

and more importantly, it also shows what weakly coherent measures actually look

like; they are created as a coherent measure that is locally disturbed by some

other measures in a way that does not disturb the diagonal. We already noted

in the comments after proposition 3 that its proof hints that the reason for the

non–existence of coherent measures is the disturbance introduced by experience.

Indeed, in the proof of theorem 2 we explicitly constructed µD as a coherent mea-

sure with disturbances introduced by each known relation between the alternative

choices. This observation is formalised in the corollary 2 as follows.

Corollary 2. Let µ∗ be a coherent measure on Ω representing ωD and µD be

given as µD([x � y]) = (1 − w′(x, y))µ∗([x � y]) + w′(x, y)µ′(x, y) for some dis-

turbance µ′ that does not disturb the diagonal. Then for all pairs x, y ∈ D we
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have w′(xi, yi) = 1. Moreover, let U be an arbitrary open subset of B2 such that

x, y ∈ D =⇒ (x, y) ∈ U . Then for any coherent µ∗ that represents ωD on Ω there

exists a disturbance (µ′, w′) such that supp(w′) ⊂ U and (1 − w′(x, y))µ∗([x �

y]) + w′(x, y)µ′(x, y) represents ωD on Ω(D).

Proof. This follows straight from the construction of

µD([x � y]) = (1−
n∑
i=1

wi(x, y))µ∗([x � y]) +
n∑
i=1

wi(x, y)µi([x � y])

in the proof of theorem 2.

This corollary tells us firstly that any coherent measure µ∗ must be disturbed in

all points in B2 on which the relation is known and secondly that those points are

the only ones in which the disturbance is really necessary in order to obtain µD that

represents ωD on Ω(D) from some coherent µ∗ on Ω. Of course, continuity means,

that the disturbance must spill over to the neighbourhood of those points. Note,

however, that nothing stops us adding some completely unnecessary disturbance

to µD if we feel like it, as long as it does not disturb the diagonal.

5 Experimental preferences

As noted already, in the setting with unknown preferences, there are two easily

identifiable motivations for the consumer. The first is the utility obtained from

immediate consumption, and the other is the chance to obtain better knowledge

about their own preferences in order to make better, more informed choices in the

future; the sole purpose of exploration of own preferences can also be enjoyable

for some. As experimentation is primarily a dynamic feature of preference dis-

covery, we do not study it in the same level of detail as conditional preferences.

However, we define the preference relation that is responsible for the experimental

motivation of the consumer, and we explore its properties a little.

The first intuition for how to define experimental preferences is to infer them

from some expected discounted utility formula by ignoring the current period.

However, in the ordinal case that we are in, it is simply not possible to do this in

any natural way. The second intuition, and the one we follow, is to define somehow

how much information is gained by adding a given alternative x to D.
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Definition 17. Let µD be given. We call relation �E (also denoted ωE) defined by

x �E y ⇐⇒ Eµ [µ(Ω(D ∪ {x})] ≤ Eµ [µ(Ω(D ∪ {y})] the experimental preference

relation of the consumer (conditional on D). Accordingly, for a given preference

relation �E we say that µ such that Eµ [µ(Ω(D ∪ {x})] ≤ Eµ [µ(Ω(D ∪ {y})] rep-

resents �E as the experimental preference relation of the consumer.

For brevity, we call ωE experimental preferences, whereas we simply say that µ

represents ωE. To give a better intuition about definition 17 we give the following

explanation. Given all the knowledge the consumer already has from knowing D,

alternative x is more informative than y if adding x to D results in Ω(D) ∪ {x}

being a smaller subset of Ω than the Ω(D) ∪ {y} that we would obtain by adding

y. A natural way to measure the size of the subsets of Ω is by using the measure µ,

therefore defining x as more informative than y if µ(Ω(D)∪{x}) < µ(Ω(D)∪{y}).

However ex ante, the consumer does not know for certain, how large Ω(D) ∪ {x}

will turn out to be. They only know the size of Ω(D ∪ {x}) conditionally on

the relations between x and elements of D and the probabilities of those exact

relations, which are also given by µ. Therefore, ex ante the best they can do is

to take the expected value of µ(Ω(D) ∪ {x}) with respect to measure µ, thereby

obtaining Eµ [µ(Ω(D ∪ {x})]. Proposition 6 states some basic facts about ωE.

Proposition 6. Experimental preferences ωE are always complete, transitive, con-

tinuous and reflexive. Moreover let KD = {x1 � · · · � xn}. Then the utility

function uE(x) = 1 −
∑n−1

i=1 µ
2
D([xi � x � xi+1]) − µ2

D([x � x1]) − µ2
D([xn � x])

represents ωE.

Proof. As uE as defined in the statement of the theorem is continuous, the second

part of the theorem implies the first part. Therefore we only need to prove that

uE represents ωE. From definition 2 we have the following

Eµ [µ(Ω(D ∪ {x})] = µ([KD∪{xn � x}])µD([xn � x])+µ([KD∪{x � x1}])µD([x � x1])+

+
n−1∑
i=1

µ([KD ∪ {xi � x, x � xi + 1}])µD([xi � x � xi+1]) =

= µ2
D([xn � x])µ(Ω(D))+µ2

D([x � x1])µ(Ω(D))+
n−1∑
i=1

µ2
D([xi � x � xi+1])µ(Ω(D)),

and therefore

x �E y ⇐⇒ (1− uE(x))µ(Ω(D)) ≤ (1− uE(y))µ(Ω(D)) ⇐⇒ uE(x) ≥ uE(y).
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As shown by proposition 6 it is trivial that ωE is transitive, which was so

problematic in the case of ωD, and just as trivial is obtaining the natural utility

representation of ωE. To understand better this utility representation, consider

the characterisation of the optimal element with respect to ωE. Note that this

optimal element exists, since uE is continuous and B is compact. Denoting pi(x) =

µD([xi � x � xi+1]), p0(x) = µD([x � x1]) and pn(x) = µD([xn � x]), we have

maxx∈B
∑n

i=0 p
2
i under the condition that

∑n
i=0 pi = 1. Clearly, if this element

exists in B, the solution to this optimisation problem is x∗ ∈ B such that pi(x) =

1
n+1

. This condition is easily interpretable, as this x∗ is precisely the element, that

the consumer has no knowledge about at all, or has the least knowledge about if

there is no element with all pi = 1
n+1

in terms of its preference ranking against

the known alternatives; this lack of knowledge is reflected by each position in the

resulting ranking being just as probable for x∗.

To simplify notation, we keep the notation that we introduced in the proof

of proposition 6 throughout this whole section, so pi = µD([xi � x � xi+1]),

p0(x) = µD([x � x1]) and pn(x) = µD([xn � x]). One obvious consequence of

proposition 6 is that to determine experimental preferences completely, all that

we need are the indirect utility functions ui for xi ∈ D, instead of the whole

measure. This obvious observation is formally stated in corollary 3.

Corollary 3. Let D = {x1, . . . , xn}, ∀i1<i2xi1 � xi2 ∈ K and assume we are

given µD, µ′D such that indirect utility functions ui(x) = µD([x � xi]) and u′i(x) =

µ′D([x � xi]) are equal. Then experimental preferences ωE, ω′E (experimental pref-

erences with respect to µD, µ′D respectively) are equal.

Proof. To see this, it suffices to show that uE as defined in the proposition 6 can be

written as a function of ui(x) only. Using the notation introduced in the proof of

proposition 6, we know that uE(x) = 1−
∑n

i=0 p
2
i (x), whereas p0 = u1, pn = 1−un

and for 1 ≤ i ≤ n− 1 we have pi = ui+1 − ui.

Note that conversely to the assignment in the proof of corollary 3 we can

identify ui given pi, that is ui =
∑i−1

j=0 pj.
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The next natural question about ωE is what conditions some element ω ∈ Ω

must satisfy so that there is some µD for which ω = ωE. Some properties are

obvious, as shown by proposition 7.

Proposition 7. Let ω be such that there exists µD for which ω = ωE. Then for

all x, y ∈ D we have x ∼ y and for any x ∈ D, y ∈ B \ D we have y � x.

Proof. It follows trivially from the fact that µ(Ω(D ∪ {x})) = µ(Ω(D)) for x ∈ D

and that µ(Ω(D ∪ {y})) < µ(Ω(D)) for any y /∈ D, where the second fact follows

from axiom 4.

Proposition 7 shows the necessary conditions on ω for it to be able to be

represented as experimental preferences. The question of whether this condition

is also sufficient is hard to answer in the general case, and is beyond the scope of

this article.

6 Conclusions

In this article, we provided the mathematical foundations for considering a con-

sumer with imperfect knowledge of their own preferences. We proposed that this

consumer should be considered not as equipped with some preference relation,

but rather with a probabilistic measure on a space of all the possible rational

preference relations. To consider these measures, we have defined a topological

structure on this space that we perceive to be extremely natural and connected

to the information structure that is available to the consumer. In theorem 1 we

provide a very important tool that allows us to easily define these measures. Es-

pecially significant aspect of the tool provided by theorem 1 is that it emphasises

the importance of indirect learning as a determining factor in measure definition.

Based on these measures, we define and study three choice procedures that

correspond to the perception of their own real preferences by the consumer under

different assumptions, namely indirect preferences, conditional preferences and

menu-dependent preferences. Especially important are conditional preferences,

and we feel this relation is the most appropriate under normal circumstances,

meaning when menu is given and measure is weakly coherent. Finally, we define

and discuss experimental preferences of the consumer, that describe the ranking
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of alternatives based on the perceived value of information that the consumption

of any given alternative would bring.

We feel that this work opens up many possibilities for further research in

preference discovery. One obvious route for extension is to consider a dynamic

case, looking at paths of consumption generated by some choice functions, and how

the conditional and experimental preferences evolve along those paths. Such an

extension seems very natural, especially as the question of how well the consumers

discover their preferences is at the very core of this theory.

Another area for further research is to extend the framework from this article to

a richer learning setting. In the current work, the learning of the consumer is very

simplistic as there are no errors in perception, the perception is perfect and the

consumer is Bayesian. Such an extension would allow several interesting questions

to be answered, since for example the assumption of non-Bayesian updating can

result in a lack of convergence as shown by Epstein et al. (2010), and as a result

there might be imperfect preference discovery even in situations in which it would

usually occur.

Finally, the current work leaves unanswered the question of whether any em-

pirical verification of preference discovery is possible. Note that the presence of

an exogenous similarity metric in our framework means there are two subjective

elements; the first is the measure that describes the perception of the consumer,

and the second is the similarity metric. In general, it is certainly possible that any

behaviour of the consumer could be accommodated by simply changing the simi-

larity metric. This need for dual identification means the question of the verifiable

conditions of this model seems very interesting.
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