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Martyna Kobus∗, Radosław Kurek†

Abstract

The measurement of socioeconomic inequalities in health receives a lot of atten-
tion in economic literature. Measurement problems that arise because of qualitative
nature of health and status indicators are widely acknowledged. Methods based on
polarization orderings have been developed to address this. We further extend the set
of available tools by proposing dominance ordering and measures that are sensitive
not only to between-group heterogeneity (i.e. increased spread), but also to within-
group homogeneity (i.e. increased bipolarity). Using data from the Survey of Health,
Ageing and Retirement in Europe we show that accounting for increased bipolarity
significantly increases the value of inequality, although it does not affect the ranking
of countries.
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1 Introduction

The measurement of health inequalities and socioeconomic inequalities in health is a fast

growing area of economic research. Problems arise because of often qualitative nature of

both health and socioeconomic indicators, which makes them difficult to use with stan-

dard measures of inequality. Such measures depend on the mean, which in case of ordinal
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variables changes with the form of cardinalization. This may lead to the reversals of con-

clusions depending on the form of cardinalization, which is of course undesirable, e.g. Abul

Naga and Yalcin (2008), Lazar and Silber (2013), Kobus (2015), Bond and Lang (2019).

The concentration index (van Doorslaer et al. (1997), van Doorslaer and Koolman (2004))

typically used to assess socioeconomic inequalities in health is also inappropriate for similar

reasons (see e.g. Makdisi and Yazbeck (2014), Fleurbaey and Schokkaert (2012)).

Following the work of Allison and Foster (2004) (henceforth, AF) a large body of litera-

ture has emerged to solve the problem of measuring inequality with ordered response data,

e.g. Apouey (2007), Abul Naga and Yalcin (2008), Apouey and Silber (2013), Abul Naga

and Stapenhurst (2015), Gravel, Magdalou and Moyes (2021), Lv, Wang and Xu (2015),

Kobus (2015), and Cowell and Flachaire (2017). The methodology is non-parametric and

avoids scaling problems. Allison and Foster (2004) proposed a bi-polarization dominance

relation to compare distributions of health in terms of inequality. The most unequal distri-

bution according to this relation is one for which half of the population occupies the lowest

ordinal category and half the highest i.e. the most bi-polarized distribution. Recently,

Kobus and Kurek (2018) extend it to two dimensions, which is a framework necessary to

capture socioeconomic inequality in health. The proposed dominance relation and mea-

sures, however, care only about how far the mass is away from the median; the so called

increased spread. They do not take into account the distribution of the mass below and

above the median, namely, how concentrated the mass is around particular categories; the

so called increased bipolarity. As noted by Esteban and Ray (1994) in their classic paper,

full definition of polarization takes into account both concepts. In this short article, we show

how already existing methods can be used to construct a dominance ordering and measures

that capture both high between–group heterogeneity (spread) and high within–group ho-

mogeneity (bipolarity) and thus can be used to better measure socioeconomic inequality in

health.

We draw on the work of Chakravarty and Maharaj (2015) (CM) that received much

less attention than Allison and Foster (2004), but in fact improves AF dominance relation

that considers increased spread only by adding increased bipolarity. In essence, to compare

two distributions according to CM relation means to compare partial sums of cumulative

distribution functions below the median, and partial sums of survival functions above the
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median. The summation of both cumulative distribution functions (cdfs) and survival func-

tions starts from the median. A distribution which has higher such sums is considered more

unequal. Our proposed extension of CM to two dimensions is a dominance relation that

compares sums of cumulative distribution function and survival function of the joint dis-

tribution. In the context of health and socioeconomic status, such relation can be seen as

the aggregation of health inequality, status inequality and the socioeconomic gradient in

health (i.e. dependence between health and status indicator). We offer a simple index that

is consistent with this relation and has some standard properties. We develop estimation

and inference procedures. In order to increase the conclusiveness of our dominance ordering

we remove the assumption of identical medians embedded in both AF and CM definitions,

utilizing recent results by Sarkar and Santra (2020). Furthermore, we allow for the con-

centration of probability mass around different quantiles, not necessarily the median. This

idea dates back to Mendelson (1987), long before Allison and Foster (2004) work.

We apply the developed methods to the data from Wave 7 of the Survey of Health,

Ageing and Retirement in Europe (SHARE) (27 countries). We proxy socioeconomic status

by 7–category educational attainment, and health by 5 – category self–reported health

status. We find dominances in both health and education in around 8% of all pairwise

comparisons, e.g. Kobus, Polchlopek and Yalonetzky (2018) get 4% for OECD countries.

By comparing measures developed here with the measures proposed by Kobus and Kurek

(2018), we observe that accounting for increased bipolarity increases inequality in each

case. The increases are significant, e.g. inequality goes up from around 0.3 to around 0.5.

However, countries’ ranking is unaffected.

The paper is organized as follows. Section 2 introduces basic framework and definitions.

In Section 3 we develop a new polarization ordering, the associated class of measures and

show that it has desired properties. In Section 4 we develop inference and estimation

procedures for the proposed class of measures. In Section 5, using the proposed tools, we

analyze educational inequalities in health in Europe.

2 Basic definitions

We define I := {1, . . . , n1}×{1, . . . , n2}× . . .×{1, . . . , nk} which is endowed with the usual

partial order: (i1, . . . , ik) ⪯ (i′1, . . . , i
′
k) if, and only, if ij ≤ i′j for all j ∈ {1, . . . , k}. I gives
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the labeling of ordinal categories; the results are the same if such labeling is transformed

monotonically. Let i = (i1, . . . , ik) denote the element of I. Throughout the article I, k, ni

are fixed unless we explicitly state otherwise. Let p be a probability distribution on the set

I.1

Obviously we require
∑
i∈I p(i) = 1 and p(i) ≥ 0 ∀i∈I. Let p be a probability

distribution on I as above. For j ∈ {1, 2, . . . , k} we define pj(i) :=
∑
i∈I such that ij=ip(i),

l ∈ {1, 2, . . . , nj}. We notice that pj is a unidimensional distribution for which we de-

fine the cumulative distribution function P j(i) =
∑

h≤i p
j(h), j ∈ {1, 2, . . . , k}. Let

P̄ j(i) =
∑

h>i p
j(h), j ∈ {1, 2, . . . , k} denote the survival function for dimension j-th.

In a similar manner we define a multidimensional cumulative distribution function by

P(i) =
∑
h⪯i p(h) and a multidimensional survival function by P̄(i) =

∑
h≻i p(h). Let

λ,Λ denote, respectively, the set of all probability distributions and cumulative distribution

functions.

For each dimension j we define qj which is the number of the category for which P j(qj−
1) < τ and P j(qj) ≥ τ . That is, qj is τ -quantile in dimension j. In particular, for τ = 1

2 ,

we denote mj as the median. Let m = (m1, . . . ,mk) denote the vector of unidimensional

medians and q = (q1, . . . , qk) similarly for any quantile. Finally, let a multidimensional

polarization index be denoted by P : Λ → R.

Allison and Foster (2004) propose the following bi-polarization ordering to compare

distributions of ordinal variables in terms of inequality.

Definition 1. Allison and Foster (2004)(AF)

Let p1, p2 be two distributions and let m denote the median. We write p1 ≾AF p2 if, and

only, if the following conditions hold

(AF1) p1, p2 have a unique and common median m,

(AF2) P1(i) ≤ P2(i) for any i < m,

(AF3) P1(i) ≥ P2(i) for any i ≥ m.

The interpretation of the AF ordering is intuitive: p1 is more concentrated (i.e. when

there is more probability mass) around the median than p2. The most equal distribution has
1By focusing on probability distributions instead of actual individuals (e.g. see Apouey (2007)), the

usual Anonymity and Population Principle axioms are assumed.
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all probability mass in one category. It is a partial ordering, that is, when two distributions

cross, no ranking of distributions can be obtained.

As already mentioned, AF focus on how far the probability mass is from the median.

This is known as increased spread and is equivalent to a median-preserving spread i.e. a

transfer of mass from someone below the median to someone above the median that does

not change the median itself (Kobus (2015)). Such a transfer moves groups below and

above the median further apart from each other. It does not, however, take into account

how homogeneous these groups are. In other words, it does not pay attention to the

distribution of mass below and above the median. The condition that does so is known

as increased bipolarity (Apouey (2007)). It is implemented by the ordering that compares

partial sums of cumulative distribution functions below the median and partial sums of

survival functions above the median, as developed by Chakravarty and Maharaj (2015). It

is implied by AF, but not vice versa.

Definition 2. Chakravarty and Maharaj (2015)(CM)

Let CS(P, i,m) denote the cumulative sum of P up to i-th category, starting from the

median m, i.e. CS(P, i,m) = Σi≤h≺mP (h) for i < m and CS(P̄ , i,m) = Σm≤h≤iP̄ (h) for

i ≥ m. Let us note that CS includes values in the median category for i ≥ m but not for

i < m. We write p1 ≾CM p2 if, and only, if the following conditions hold

(CM1) p1, p2 have a unique and common median m,

(CM2) CS(P1, i) ≤ CS(P2, i) for any i < m,

(CM3) CS(P̄1, i) ≤ CS(P̄2, i) for any i ≥ m.

Here distribution p2 is more concentrated around given categories below and/or above

the median than p1. That is, p2 is characterized by more homogeneous groups on both

sides of the median than p1.

3 New bidimensional polarization ordering

We now propose a natural multidimensional extension of CM.
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Definition 3. Multidimensional CM (mCM)

Let p1,p2 be two probability distributions with a unique and common τ -quantile q. We say

that p1 ≾mCM p2 if, and only, if the following two conditions hold

(1) CS(P1, i,q) ≤ CS(P2, i,q) for i ≺ q

(2) CS(P̄1, i,q) ≤ CS(P̄2, i,q) for i ⪰ q where P̄1, P̄2 denote survival functions of p1

and p2, respectively.

The mCM ordering compares sums of cumulative distribution and survival functions

below and above a given quantile. Distribution p2 is more concentrated around bidimen-

sional categories, for example, around a given education-health category, than distribution

p1. The following family of indices is consistent with this ordering.

Definition 4.

PmCM
a,b (p,q) =

Σi≺qaiP(i) + Σi⪰qbiP̄(i)

C
(1)

where ai = Πk
j=1(nj − qj + ij), bi = Πk

j=1(nj + qj − ij), C = supq{min τjΣi≺qΠ
k
j=1(nj −

qj + ij) + (1−max τj)(Σq⪯i≺nΠ
k
j=1(nj + qj − ij)− 1)}.

Weights a, b allow for differential treatment of inequality below and above the chosen

quantile. In particular, when a > b, then more weight is attached to inequality in the lower

tail of the distribution and the reverse holds when a < b. Furthermore, the weights and the

denominator C have been chosen to normalize the index (please see NORM axiom below).

In particular, weights at P are increasing and at P̄ are decreasing to ensure consistency

with mCM. Finally, these multidimensional weights are a multiplication of weights that

would hold on each dimension if the measure reduced to a unidimensional index consistent

with CM.

We will now show that PmCM
a,b has a number of properties that are desired for a polar-

ization measure. Before we do this, we will define those properties.

CON P : λ → R is a continuous function.

NORM The range of P (Ran(P)) is the closed interval [0, 1].
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DECOMP There exists f : Ran(P) × Ran(P) × (0, 1) → R continuous and strictly

increasing with respect to the first two coordinates such that for any p1,p2 ∈ λ,

α ∈ (0, 1)

P(αp1 + (1− α)p2) = f(P(p1),P(p2), α),

where αp1 + (1 − α)p2 is a weighted sum of probability distributions, i.e. if p1

assigns mass p1(i) to category i and p2 assigns mass p2(i), then the probability mass

attributed to i in αp1 + (1− α)p2 is αp1(i) + (1− α)p2(i).

ADDSEP P(p) = f(P(p1),P(p2), . . . ,P(pk)), where f(x) =
∑k

j=1 fj(xj).

CATADD Let p2,p3 be such distributions that pj2(1) = 0, p2((i1, . . . , ij + 1, . . . , ik)) =

p1((i1, . . . , ij , . . . , ik)) for 1 ≤ ij ≤ nj , pj3(nj + 1) = 0, p3((i1, . . . , ij , . . . , ik)) =

p1((i1, . . . , ij , . . . , ik)) for 1 ≤ ij ≤ nj and let q1,q2,q3 be obtained in the same way

then P(p1) ≤ P(q1) ⇐⇒ P(p2) ≤ P(q2) ⇐⇒ P(p3) ≤ P(q3).

SLIDE Let p1 be such distribution that pj1(1) = 0, let p2((i1, . . . , ij , . . . , ik)) = p1((i1, . . . , ij+

1, . . . , ik)) for ij < nj and pj2(nj) = 0, then P(p1) ≤ (≥)P(q) ⇐⇒ P(p2) ≤ (≥
)P(q).

CON is a natural technical assumption. NORM means that the index achieves the

lowest value equal to zero for the most equal distribution, namely, the distribution such

that all mass is in one category. The index admits the highest value equal to one for the most

unequal distribution, in other words, bi-polarized distribution. DECOMP means that the

index is decomposable by population subgroups, namely, that it is a function of the weighted

mean of the indices’ values in the subgroups, with weights corresponding to population size

of the subgroups (Shorrocks (1984), Kobus and Milos (2012)). In addition, ADDSEP states

that the index is an additive function of the unidimensional indices. CATADD involves

an operation which adds an empty category to one dimension either below the lowest

category or above the highest category, whereas SLIDE moves the probability mass to

empty categories so the chosen quantiles of two distributions agree (provided that there are

enough empty categories). These two axioms allow for comparisons of distributions with

different quantiles (Sarkar and Santra (2020)).
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Theorem 1. PmCM
a,b fulfills CON, NORM, DECOMP, SLIDE. It also fulfills CATADD

(with respect to attribute j) if nj = inf{i|P̄ j(i) = 0} − sup{i ≥ 0|P j(i) = 0}.

4 Statistical inference

In this section we present how to estimate PmCM
a,b and we establish its large sample dis-

tribution. We consider the following setting. Each individual chooses one and only one

answer in every category, which gives a unique response in the set of all states I. We will

assume that there are N independent responses (N1...11, N1...12, . . . , Nn1...nk−1nk
) defining

the vector of frequencies p̂. In such a model, I has joint multinomial distribution with

parameters p = (p1...11, p1...12, . . . , pn1...nk−1nk
) and N . Empirical probability distribution is

the following

p̂i1i2...ik =
1

N
ΣN
t=11(I

t
1 = i1, I

t
2 = i2, . . . , I

t
k = ik) =

Ni1i2...ik

N
,

In Formby et al. (2004) it is shown that multinomial distributions are asymptotically

distributed as normal with mean p and covariance matrix Σ, where (for I = {1, 2, . . . , n1}×
{1, 2, . . . , n2} × · · · × {1, 2, . . . , nk}) we assume the following notation

p =


p1...1

p1...12
...

pn1...nk−1nk

 ,

Σ =


p1...11(1− p1...11) −p1...11p1...12 · · · −p1...11pn1...nk−1nk

−p1...12p1...11 p1...12(1− p1...12) · · · −p1...12pn1...nk−1nk

...
...

. . .
...

−pn1...nk−1nk
p1...11 −pn1...nk−1nk

p1...12 · · · pn1...nk−1nk
(1− pn1...nk−1nk

)

 .

That is, lth row/column corresponds to (i1, i2, . . . ik) category, where l = ik + Σk−1
j=1(ij −

1)nj+1nj+2 . . . nk. We have ik = lmodnk + nk1nk|l, lk = l−ik
nk

and ij − 1 = lj+1modnj ,

lj =
lj+1−(ij−1)

nj
for 1 ≤ j < k. For example, for k = 3 and (n1, n2, n3) = (6, 5, 8), the 28th

category is 28 = 4 + 3 × 8 i.e. (0 + 1, 3 + 1, 4) = (1, 4, 4). The multivariate, multinomial
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distributions of two samples can be compared by stacking the probabilities in respective

probability vectors Ê = p̂− q̂. Under the null hypothesis of homogenous distributions,

Ê d→ N
(
0,

Np +Nq

NpNq

Σ

)
. (2)

Using Continuous Mapping Theorem we get that under appropriate assumptions F (P̂)

will be a consistent estimator of F (P). Let us define n1n2 . . . nk-dimensional Jacobian

(horizontal) vector of the transformation F ,

J =

(
∂F

∂P1...11
,

∂F

∂P1...12
, . . .

∂F

∂Pn1...nk−1nk

)
.

N independent responses (N1...11, N1...12, . . . , Nn1...nk−1nk
) are jointly distributed from a

multinomial distribution with parameters N and p and such that cov(
√
np̂) = Σ(p), where

Σ(p) is a finite positive semi-definite matrix.

Theorem 2. For multinomial distribution P and function F which is continuously differ-

entiable at P and does not involve total number of observations N , we have that

√
n(F (P̂)− F (P))

d→N (0, JLΣLTJT )

where J = J(P) is Jacobian vector evaluated at P, and L = (lij)1≤i,j≤n1n2...nk
is such that

lij = 1 if j ≡ (j1, j2 . . . jk) ⪯ (i1, i2, . . . ik) ≡ i and 0 otherwise where ⪯ is lexicographical

order.2

A consistent estimator for Σ is

σ̂(i1i2...ik)(i1i2...ik) =
Ni1i2...ik

N
(1− Ni1i2...ik

N
)

and

σ̂(i1i2...ik)(j1j2...jk) = −Ni1i2...ikNj1j2...jk

N2
if it ̸= jt for some 1 ≤ t ≤ k.

It follows that standard error σ is equal to σ =

√
J(P̂)LΣ̂LT J(P̂)T

n .. The Jacobian vector

for F = PmCM
a,b is given by Ji =

ai
C for i ≡ i ≺ m, Ji = bi

C for i− n1n2 . . . nk ≡ h ⪰ m and

Ji = 0 otherwise, where ai, bi, C are defined as in Definition 1.
2The result is unchanged when m is replaced by τ .
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5 Empirical application

We use data from Survey of Health, Ageing and Retirement in Europe (SHARE), Wave

7, which was collected in 2017. SHARE is a multi-country representative survey of non-

institutionalized individuals aged 50. It contains rich data on health and socioeconomic

status. We measure socioeconomic inequalities in health. Socioeconomic status is proxied

by educational attainment and health by self-reported health status. The specific indicators

are presented in Table 1.

Table 1: Ordinal indicators of health and education

Dimension Indicator Level Construction

Education Highest educational 1 Pre-primary education

level attained 2 Primary education

3 Lower secondary education

4 (Upper) secondary education

5 Post-secondary non-tertiary education

6 First stage of tertiary education

7 Second stage of tertiary education (research)

Health Self-reported 1 Poor

health status 2 Fair

3 Good

4 Very good

5 Excellent

Source: Wave 7 of SHARE.

For each pair of 27 countries that took part in the survey we search for a bidimensional

dominance cCM at either q = .25, q = .5 or q = .75. Dominance holds in around 8%

of all pairwise comparisons. In fact, there is more dominance because in case there was

dominance for, say, q = .25 and q = .5 we choose a lower quantile. For these dominances,

we report the values of indices and test statistics related to PmCM
a,b and a measure proposed

by Kobus and Kurek (2018). PmAF2
a,b uses cumulative distribution and survival function to

compare distributions below and above a given quantiles, but not their sums, so it does not

take into account increased bipolarity. Therefore, the comparison of two measures allows

us to detect the impact of increased bipolarity on the observed inequality.

In Table 2 we report the values of two measures for the list of countries where dominance
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holds. The first and third column report values for the first country in the comparison, and

the second and fourth column report values for the second country. We can see that the

values of PmCM
a,b are in each case significantly higher than the values of PmAF2

1,1 indicating

that accounting for group homogeneity significantly increases inequality score, e.g. 0.34 vs.

0.45 for AUT (first row of Table 2). The joint distribution of education and health becomes

much more polarized when increased bipolarity is considered too.

Table 2: The values of polarization indices

Dominance PmAF2
1,1 PmCM

1,1

AUT-FIN 0.34(0.0077) 0.39(0.0101) 0.45(0.0093) 0.50(0.0114)

ISR-AUT 0.25(0.0052) 0.18(0.0034) 0.32(0.0061) 0.24(0.0042)

ISR-BGR 0.25(0.0052) 0.20(0.0047) 0.32(0.0061) 0.25(0.0054)

ISR-BEL 0.32(0.0069) 0.27(0.0042) 0.43(0.0086) 0.38(0.0052)

CYP-CZE 0.26(0.0067) 0.15(0.0026) 0.34(0.0080) 0.19(0.0031)

ISR-CYP 0.32(0.0069) 0.31(0.0092) 0.43(0.0086) 0.45(0.0120)

CYP-MLT 0.46(0.0139) 0.29(0.0096) 0.60(0.0169) 0.41(0.0124)

ESP-CZE 0.34(0.0048) 0.19(0.0034) 0.43(0.0055) 0.25(0.0041)

FRA-CZE 0.23(0.0041) 0.15(0.0026) 0.28(0.0046) 0.19(0.0031)

FIN-CZE 0.29(0.0067) 0.17(0.0031) 0.39(0.0082) 0.25(0.0040)

ISR-CZE 0.32(0.0069) 0.17(0.0031) 0.43(0.0086) 0.25(0.0040)

LUX-CZE 0.23(0.0060) 0.15(0.0026) 0.29(0.0071) 0.19(0.0031)

SWE-CHE 0.28(0.0053) 0.20(0.0046) 0.38(0.0063) 0.27(0.0056)

ISR-DEU 0.28(0.0057) 0.18(0.0031) 0.40(0.0074) 0.26(0.0041)

DNK-PRT 0.36(0.0054) 0.16(0.0110) 0.47(0.0066) 0.27(0.0153)

DNK-SVK 0.36(0.0054) 0.20(0.0046) 0.47(0.0066) 0.28(0.0057)

ISR-EST 0.25(0.0052) 0.16(0.0024) 0.32(0.0061) 0.23(0.0032)

SWE-EST 0.24(0.0039) 0.16(0.0024) 0.31(0.0047) 0.23(0.0032)

FRA-ITA 0.26(0.0044) 0.19(0.0030) 0.41(0.0058) 0.31(0.0042)

ISR-ITA 0.28(0.0057) 0.19(0.0030) 0.40(0.0074) 0.31(0.0042)

ISR-LTU 0.34(0.0071) 0.23(0.0053) 0.47(0.0090) 0.34(0.0071)

ISR-LVA 0.42(0.0109) 0.28(0.0090) 0.52(0.0124) 0.36(0.0101)

ISR-MLT 0.28(0.0057) 0.19(0.0055) 0.40(0.0074) 0.33(0.0081)

ISR-SVN 0.34(0.0071) 0.21(0.0042) 0.47(0.0090) 0.31(0.0054)

SWE-MLT 0.31(0.0049) 0.19(0.0055) 0.43(0.0061) 0.33(0.0081)

ROU-PRT 0.15(0.0032) 0.11(0.0075) 0.25(0.0046) 0.19(0.0105)

Notes: Own calculations based on SHARE data (Wave 7).
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While increased bipolarity strongly affects the assessment of inequality, it does not,

however, change the countries’ ranking, as can be seen in Table 3, where we report test

statistics from comparisons of indices PmAF2
a,b and PmCM

a,b . The sign of a test statistic is the

same in PmCM
a,b as in PmAF2

a,b for each pairwise comparison. This holds for a various weights:

(1,1), (10,1) and (1,10).

Table 3: The values of test statistic

Dominance PmAF2
a,b PmCM

a,b

A-B 1,1 10,1 1,10 1,1 10,1 1,10

AUT-FIN -3.83 [-1.52] -6.41 -3.64 [-0.70] -6.16

ISR-AUT 10.45 8.06 5.67 10.21 7.66 5.59

ISR-BGR 7.03 2.84 6.97 7.58 2.74 7.11

ISR-BEL 5.92 7.89 2.50 5.58 7.69 2.21

CYP-CZE 16.22 9.08 13.61 17.56 8.38 14.35

ISR-CYP [0.88] [-1.75] [1.27] [-1.15] -2.41 [-0.18]

CYP-MLT 10.00 5.07 8.30 9.32 4.76 7.51

ESP-CZE 25.14 27.29 5.33 24.91 25.96 5.56

FRA-CZE 16.64 11.19 12.06 16.42 10.52 11.46

FIN-CZE 16.00 9.62 12.80 15.38 9.67 11.73

ISR-CZE 20.15 11.64 15.91 19.25 11.47 14.74

LUX-CZE 12.36 7.28 9.52 12.66 7.26 9.19

SWE-CHE 12.59 10.26 7.71 12.28 10.09 6.19

ISR-DEU 15.78 16.62 13.01 16.71 15.78 13.36

DNK-PRT 16.24 [-1.30] 20.30 12.08 -2.34 15.99

DNK-SVK 22.76 7.74 21.23 22.26 7.52 20.43

ISR-EST 15.29 10.51 10.51 12.16 10.40 7.05

SWE-EST 16.51 6.31 16.04 12.69 6.70 11.61

FRA-ITA 13.62 11.52 13.34 13.81 10.33 13.37

ISR-ITA 14.63 12.33 13.38 11.21 9.43 10.19

ISR-LTU 12.66 6.95 10.52 11.33 6.54 9.07

ISR-LVA 9.64 2.25 14.50 10.17 2.26 13.28

ISR-MLT 10.91 10.60 10.04 6.90 7.52 6.29

ISR-SVN 15.79 5.53 14.55 15.85 5.32 14.39

SWE-MLT 15.08 8.32 15.49 10.03 3.50 10.83

ROU-PRT 4.85 2.12 4.29 5.10 [0.93] 4.88

Notes: Own calculations based on SHARE data (Wave 7). [..] de-

notes insignificant values of a test statistic.
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Appendix

Proof of Theorem 1. First of all, as PmCM
a,b is consistent with mCM ordering, because it is

increasing with CS(P), which follows from the fact that weights at P(i) are increasing and

at P̄(i). The fact that PmCM
a,b fulfills CON and DECOMP is obvious since it is a linear

function. Let us check the NORM axiom. Let p and q be the best and worst distributions

according to AF; q has all probability mass in the median category, while p has half the

mass minus infinitesimal mass in the first category, and infinitesimal mass in the median

and half of the mass in the last category. We have

PmCM
a,b (q) =

0

C
= 0

and

sup
m

PmCM
a,b (p) =

supm{1
2(aΣi≺mΠk

j=1(nj −mj + ij) + bΣm⪯i≺nΠ
k
j=1(nj +mj − ij))}

C
=

C

C
= 1.

We note that i + 1 = (i1, . . . , ij + 1, . . . , ik). Let us now take distributions p,q such

that pj(1) = 0, qi = pi+1 and qj(nj) = 0. We know that

api+1 = a(nj −mj + ij +1)Πk
l ̸=j(nl−ml+ il) = a(nj − (mj −1)+ ij)Π

k
l ̸=j(nl−ml+ il) = aqi ,

bpi+1 = b(nj +mj − ij − 1)Πk
l ̸=j(nl +ml − il) = b(nj +(mj − 1)− ij)Π

k
l ̸=j(nl +ml − il) = bqi .

Finally
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PmCM
a,b (p) =

Σi≺map
i
P(i)+Σi⪰mbp

i
P̄(i)

C =

=
Σi+1≺map

i+1P(i+1)+Σi+1⪰mbp
i+1P̄(i+1)

C =

=
Σi≺m−1a

q
i
Q(i)+Σi⪰m−1b

q
i
Q̄(i)

C = PmCM
a,b (q)

Proof of Theorem 2. For k = 2 and (n1, n2) = (3, 3), L is the following

L =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0

1 1 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1



.

In general, let Lt be the square matrix of dimension t satisfying ltij = 1 if i ≥ j and ltij = 0

otherwise. We define L recursively by setting L
nk−t

t+1 = Lnk−t ⊗ L
nk−t+1

t , where ⊗ denotes

Kronecker product (for any a× b matrix A and c× d matrix B, A⊗B is ac× bd matrix C

such that c(b(i−1)+k)(d(j−1)+l) = aijbkl). Next, let Lnk
1 = Lnk and finally, L = Ln1

k .

From Central Limit Theorem, we know that
√
n(p̂−p) d→ N (0,Σ). It is straightforward

to check that for

P̂ = Lp̂,P = Lp

we have
√
n(P̂ − P)

d→ N (0, LΣLT ). From the Law of Large Numbers P̂ converges in

probability to P and from Continuous Mapping Theorem we see that J(P̂) converges in

probability to J(P) (due to continuous differentiability). Finally, from the delta method

we obtain
√
n(F (P̂)− F (P))

d→N (0, JLΣLTJT ).
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