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Abstract

Standard inequality measures are not well-suited for ordered response data e.g. self-
reported health status. Literature addressing this problem has been growing, mostly around
a bi-polarization relation (Allison and Foster 2004, AF). Recently (Kobus and Kurek 2018)
have extended it to a multidimensional framework e.g. their results are applied to the case
of measuring inequality in health and other variables (e.g. status). We further extend
their results, in particular, we offer two multidimensional extensions of second-order AF
(proposed originally by (Chakravarty and Maharaj 2015), propose classes of measures, study
their properties and develop inference and estimation procedures. Second–order AF cares
about spread of mass away from the median (like AF), but also about homogeneity of
groups (so called increased bipolarity (Apouey 2007). We then compare joint distributions
of two ordinal indicators, namely education and health, using Survey of Health, Ageing and
Retirement in Europe. In 10% of all pair-wise comparisons we find unambiguous rankings;
typically multivariate dominances are infrequent but robust. Israel emerges as the most
unequal country. Dependence between education and health plays a role in overall inequality
level, but not in the countries’ rankings - these are the same when education and health are
treated separately (i.e. as independent); similarly for increased bipolarity.
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1 Introduction

Following the work of (Allison and Foster 2004, henceforth AF) a large body of theoretical
literature has emerged to solve the problem of measuring inequality with ordered response
data. Such data are very common in all social sciences. These are popular indicators such as
self-reported health status, self-declared life satisfaction, educational attainment, and other.
They have been more and more used in policy research analyses to evaluate prosperity
e.g. in such high-profile initiatives as the report by the Stiglitz-Sen-Fitoussi Commission
on the Measurement of Economic Performance and Social Progress, the OECD analyses
based on the Better Life Index, or the very recent launch of the Global Multidimensional
Poverty Index. The problem with such data is that standard way of cardinalizing an ordinal
indicator, such as for example imposing a given scale and computing summary statistics such
as mean, variance and inequality measures, suffers from a large degree of arbitrariness. In
particular, when a different scale is used, conclusions reached with such procedures may
change. There are many empirical examples of such reversals (Abul Naga and Yalcin 2008,
Lazar and Silber 2013, Kobus 2015, Bond and Lang 2018).

A similar problem arises with the measurement of socio-economic inequalities in health.
Such inequalities are extensively studied in economics, social epidemiology, medicine and
health psychology, and in medical sociology (see (Smith 1999, O’Donnel et al. 2008, Cutler,
Lleras-Muney and Vogl 2011, Evans, Wolfe and Adler 2012) for reviews). Generally, the
lower socioeconomic status (SES) the lower the health status. This phenomenon is observed
in many industrialised countries. When health is proxied by self-reported health status,
standard measurement tools, such as concentration index (van Doorslaer et al. 1997, van
Doorslaer and Koolman 2004) are ill–suited to such data (see (Makdisi and Yazbeck 2014)).

Therefore, for more than a decade a new methodology is being developed that is based
on the distributions of ordinal variables and thus avoids scaling difficulties. Many authors
have contributed to this line of research e.g. (Allison and Foster 2004, Apouey 2007, Abul
Naga and Yalcin 2008, Kobus and Milos 2012, Apouey and Silber 2013, Lazar and Silber
2013, Abul Naga and Stapenhurst 2015, Gravel, Magdalou and Moyes 2017, Lv, Wang and
Xu 2015, Kobus 2015, Cowell and Flachaire 2017), and others. The methodology is non-
parametric and uses a minimal set of assumptions. So far the dominant approach in this
field has been to measure inequality as bi-polarization as proposed by (Allison and Foster
2004) partial ordering. The most unequal distribution according to this relation is one for
which half of the population occupies the lowest ordinal category and half the highest i.e.
the most bi-polarized distribution.1

The results from this now fairly extensive literature, however, cannot be readily applied
to SES – health distributions, because they are developed for a single ordinal indicator.
They are suited for “pure” inequalities in health, and indeed (Madden 2010) compares the
performance of ordinal and cardinal inequality indices to measure health inequality. SES-
related inequalities in health require at least two indicators (a proxy for SES and a proxy
for health) and thus a bidimensional framework. Very recently (Kobus and Kurek 2018)
made a first attempt at developing a theory of multidimensional inequality for ordinal data.
They extend the AF approach by offering two partial orderings, one which assumes inde-
pendence of ordinal indicators and another one which takes dependence into account. They
characterize these orderings by a set of axioms and develop classes of measures consistent
with it. Here we further develop their results - please refer to the next paragraph. We then
use these results to compare joint distributions of SES and health in terms of inequality.
That is, if some criteria hold we judge one distribution as more bidimensionally equal than
the other. Furthermore, by comparing results from methods that assume independence

1There has been significant controversies as to why inequality is measured as bi-polarization (see e.g. (Zheng
2008)) whereas in a cardinal framework the two are disjoint concepts (Esteban and Ray 1994), however, since
many authors have already commented on this (see e.g. (Kobus 2015)), we leave this discussion behind and
refer to original work by (Allison and Foster 2004) and use the word “inequality” instead of “polarization”. It is
important to note, however, that especially in the last years new approaches to inequality in ordinal data have
emerged which deviate from AF setting (e.g. (Cowell and Flachaire 2017, Gravel, Magdalou and Moyes 2017)).
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with the ones that do not, we can evaluate the role of dependence between SES and health
in the overall inequality. Dependence may be viewed as capturing solely SES gradient in
health, whereas joint comparisons as capturing both gradient and inequalities in marginal
distributions (“pure” health and income inequalities). Here there are no assumptions as to
the form of this dependence. Please note that standard approaches such as concentration
index assumes a particular measure of dependence and such that are not distribution - free
i.e. they take marginal distributions into account (mostly through cardinalizing an ordinal
indicator (Makdisi and Yazbeck 2014).

While the AF inequality ordering is based on the concept of first order dominance, the
ordering proposed by (Chakravarty and Maharaj 2015) (henceforth ChM or second – order
AF (soAF)) is based on the concept of second order dominance.2 While AF ordering is
mostly characterized through how far the mass is away from the median (i.e. increased
spread), second order AF additionally takes into account the distributions of these masses,
namely, how much they are concentrated around particular points below and above the
median (i.e. increased bipolarity). This is consistent with defining properties of polariza-
tion orderings, namely, that of high between–group heterogeneity and high within–group
homogeneity (Esteban and Ray 1994). ChM implement these properties by a dominance
relation which uses the sums of cumulative distribution functions (cdfs) to compare two
distributions. In more detail, at the bottom end of the distribution they compare cumula-
tive cdfs and at the top of the distribution (above the median) they compare cumulative
survival functions. A distribution which is higher according to both is more polarized/more
unequal. We extend their definition to a multidimensional setting, similarly to what (Kobus
and Kurek 2018) have done recently with AF definition (their ordering is denoted by mAF
from multidimensional AF). We propose two multidimensional orderings: the first one states
that ChM relation holds for each dimension and the second uses ChM summation of cu-
mulative proportions, but here these are proportions of the joint distribution. The first
ordering, called somAF1 (second – order multidimensional AF) implicitly assumes dimen-
sions’ independence and is applicable to cases in which well-being attributes are only weakly
dependent. As pointed out by (Fattore and Maggino 2014) this happens often with many
quality of life indicators. The second ordering, called somAF2 acknowledges dimensions’
dependence. We offer indices consistent with these two relations and study their properties
(Lemma 1) and 2). By comparing the results from two families of measures, one can study
the impact of dependence on joint inequality.

The approach presented in this papers gives very robust result if they hold; a typical
limitation is inconclusiveness. Dominance curves may cross in which case nothing can
be said about a given pair of distributions. In order to increase conclusiveness of our
dominance orderings we do two things. From the beginning we remove the assumption of
identical medians embedded in both AF and ChM definition, which means that we can
compare distributions with different medians. The latter was the main limitation of the AF
approach, recently removed by (Sarkar and Santra 2018) and we use their results. Allowing
for differing medians causes problems with normalization of measures and we solve them.3

We also allow for the concentration around different points than the median (this originally
from criteria proposed by (Mendelson 1987)). This way we get what we call somqAF
relations, where q stands for any quantile.

Finally, we develop estimation and inference procedures for both somAF – related mea-
sures and measures introduced in (Kobus and Kurek 2018) for mAF partial ordering (The-
orem 1). We illustrate how these methods can be applied to distributions of health and
socio–economic status. We use Wave 6 of the Survey of Health, Ageing and Retirement in
Europe (SHARE), which contains rich information about health and socio–economic status
of individuals aged 50 and above. We proxy SES by 7–category educational attainment, and

2Formally, these are not stochastic dominances, but partial sums. For differentiation please refer to the classic
paper by (Fishburn and Lavalle 1995).

3(Sarkar and Santra 2018) are silent about these problems i.e. measures in Table 1, pp. 35 of their paper are
not sufficiently normalized.
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health by 5 – category self–reported health status. We find dominances in both health and
education (i.e. one country dominates the other in both dimensions according to somqAF1)
in 10% of the cases, which in comparison to e.g. (Kobus, Polchlopek and Yalonetzky 2018)
who get 4% for OECD countries is significantly higher. For these 10% of the cases, the
dominating countries are robustly more unequal when it comes to SES – health inequalities.
These countries are mostly Israel followed by Greece. Here we find the highest education –
health polarization. We observe two patterns. Firstly, the indices which take into account
dependence between education and health show smaller values than what is obtained by
just adding marginal inequalities in health and income. The direction of this change is to be
expected (i.e. it would be the same only in the case of perfect dependence between health
and education), however, the magnitude is significant; the decrease is from around 0.5 to
around 0.3. Dependence does matter for the level of inequality, however, at least in this
sample, not for the ranking of countries. These are the same according to both somqAF1

and somqAF2 measures. Secondly, in the comparison between mqAF and somqAF mea-
sures, rankings too remain stable. The added value of increased bipolarity embedded in
somAF1 – type of orderings seems to matter for the magnitude of differences, but for the
direction it is comparisons with respect increased spread property that are dominant.

The paper is organized as follows. Section 2 contains basic definitions and notation.
Section 3 offers multidimensional polarization orderings and Section 4 develops measures
consistent with these orderings. Section 5 develops inference and estimation for these mea-
sures and measured introduced in (Kobus and Kurek 2018). Section 6 offers a generalization
of all these measures to any quantile. Then, in Section 7 we study distributions of education
and health, and finally, Section 8 concludes.

2 Basic definitions and notation

We define I := {1, . . . , n1} × {1, . . . , n2} × . . . × {1, . . . , nk} which is endowed with the
usual partial order: (i1, . . . , ik) � (i′1, . . . , i

′
k) if and only if ij ≤ i′j for all j ∈ {1, . . . , k}. I

gives labeling of ordinal categories; the results are the same if such labeling is transformed
monotonically. Let i = (i1, . . . , ik) denote the element of I. Throughout the article I, k, ni
are fixed unless we explicitly state otherwise. Now let p be a probability distribution on
the set I.4

Obviously we require
∑
i∈I p(i) = 1 and p(i) ≥ 0 ∀i∈I. Let p be a probability

distribution on I as above. For j ∈ {1, 2, . . . , k} we define

pj(i) :=
∑

i∈I such that ij=i

p(i), l ∈ {1, 2, . . . , nj} . (1)

We notice that pj is a unidimensional distribution for which we define the cumulative
distribution function

P j(i) =
∑
h≤i

pj(h), j ∈ {1, 2, . . . , k} . (2)

Let
P̄ j(i) =

∑
h>i

pj(h), j ∈ {1, 2, . . . , k} . (3)

denote the survival function for dimension j-th.
In a similar manner we define a multidimensional cumulative distribution function by

P(i) =
∑
h�i

p(h). (4)

4By focusing on probability distributions instead of actual individuals (e.g. see (Apouey 2007)), the usual
Anonymity and Population Principle axioms are assumed.
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and a multidimensional survival function by

P̄(i) =
∑
h�i

p(h). (5)

Let λ,Λ denote, respectively, the set of all probability distributions and cumulative distri-
bution functions.

For each dimension j we define a median mj which is the number of the category for
which P j(mj − 1) < 1/2 and P j(mj) ≥ 1/2. Let m = (m1, . . . ,mk) denote the vector of
unidimensional medians. We often call such defined multidimensional median simply the
median. It is unique. This assumption can be relaxed, but it is mostly technical.5

Finally, let a multidimensional polarization index be denoted by P : Λ→ R.

3 Polarization partial orderings

Here we propose two polarization partial orderings which are multidimensional extensions
of ChM ordering. Before we do this, however, we need to introduce a definition of ChM
ordering and a definition of AF ordering which is a foundation of ChM. We start with AF.

(Allison and Foster 2004) proposed the following relation to measure inequality for or-
dinal data.

Definition 1. First-order unidimensional AF (AF, Allison and Foster 2004)
Let p1, p2 be two distributions and let m denote the median. We write p1 -AF p2 if and
only if the following conditions hold

(AF1) p1, p2 have a unique and common median m,

(AF2) P1(i) ≤ P2(i) for any i < m,

(AF3) P1(i) ≥ P2(i) for any i ≥ m,

We keep the notation of (Allison and Foster 2004), so the dominating distribution is
worse in the sense of the polarization relation. The interpretation of the AF ordering
is intuitive. In particular, we have that p1 -AF p2 when p1 is more concentrated (i.e.
when there is more probability mass) around the median than p2. The most bipolarized
distribution, that is, the one that has half of the mass in the lowest category and half of the
mass in the highest category, is the most unequal distribution according to this relation.
The most equal distribution, on the other hand, has all probability mass in one category.

The unidimensional ChM ordering we define below relates with AF in that it distin-
guishes between below and above median part of the distribution. It double sums the
probability distribution, starting from the median. It compares partial sums of cumulative
distribution functions below the median and partial sums of survival functions above the
median. It is consistent with both transfers that move mass away from the median (i.e.
increased spread (Apouey 2007)) or, equivalently median-preserving spread (Kobus 2015))
and transfers that increase within – group homogeneity (i.e. increased bipolarity (Apouey
2007, Chakravarty and Maharaj 2015)).

Definition 2. Second-order unidimensional AF (ChM, Chakravarty and Maharaj
2015)
Let CS(P, i,m) denote cumulative sum of P up to i-th category, starting from the median
m, i.e. CS(P, i,m) = Σi≤h≺mP (h) for i < m and CS(P̄ , i,m) = Σm≤h≤iP̄ (h) for i ≥ m.
Let us note that CS includes value in median category for i ≥ m and does not for i < m.

We write p1 -soAF p2 if and only if the following conditions hold

(AF1) p1, p2 have a unique and common median m,

(AF2) CS(P1, i) ≤ CS(P2, i) for any i < m,

5(Kobus 2015) shows how the definition of AF can be extended to cover the case of several medians and only
one common.
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(AF3) CS(P̄1, i) ≤ CS(P̄2, i) for any i ≥ m.

Here p1 -soAF p2 means that distribution p2 has more mass away from the median
and/or this mass is concentrated around a given category below and/or above the median.
That is, p2 forms fewer groups further from the median than p1. We now introduce two
multidimensional extensions of ChM (or unidimensional AF), we call them somAF1 and
somAF2, where som denotes “second-order multidimensional”. somAF1 is a straightofor-
ward extension in which we postulate that Definition 2 holds for each dimension. In this
case, dimensions are treated as independent. somAF2 accounts for dependence between
dimensions in that it double sums multidimensional cumulative distribution functions and
multidimensional survival functions in a manner similar to Definition 2.

Definition 3. Second Order Multidimensional AF (somAF1)
Let p1,p2 be two probability distributions with a unique and common median m. We say
that p1 -somAF1 p2 if and only if the following two conditions hold

(1) CS(P j1 , i) ≤ CS(P j2 , i) for i < mj and for all j,

(2) CS(P̄ j1 , i) ≤ CS(P̄ j2 , i) for i ≥ mj and for all j, where P̄ j1 , P̄
j
2 denote survival functions

of j-th marginals of p1 and p2, respectively.

In order to introduce the type of summation embedded in Definition 2 for a mul-
tidimensional distribution we define the following. Let CS(P, i,m) denote cumulative
sum of P up to i-th category vector, starting from the multidimensional median m, i.e.
CS(P, i,m) = Σi�h≺mP(h) for i ≺m and CS(P̄, i,m) = Σm�h�iP̄(h) for i �m.

Definition 4. Second Order Multidimensional AF (somAF2)
Let p1,p2 be two probability distributions with a unique and common median m. We say
that p1 -somAF2 p2 if and only if the following two conditions hold

(1) CS(P1, i) ≤ CS(P2, i) for i ≺m

(2) CS(P̄1, i) ≤ CS(P̄2, i) for i � m where P̄1, P̄2 denote survival functions of p1 and
p2, respectively.

Both somAF1 and somAF2 are extensions to second-order unidimensional AF relation
(Definition 2. The way we extend a unidimensional relation is directly linked to multidi-
mensional extension to first - order unidimensional AF (Definition 1) proposed by (Kobus
and Kurek 2018). These are the following.

Definition 5. Multidimensional AF (mAF1)
Let p1,p2 be two probability distributions with a unique and common median m. We say
that p1 -mAF1 p2 if and only if pj1 -AF p

j
2 for all j ∈ {1, 2, . . . , k}.

According to mAF1, AF holds on each dimension. If the probability mass on each
marginal is concentrated in one category, then joint distribution is concentrated in one
category too. The opposite is true as well, that is, if the joint probability mass is concen-
trated in one (multidimensional) category (which is then also the median m), then so is
the probability mass on each marginal. This is the least polarized distribution according to
-mAF1.

Definition 6. Multidimensional AF (mAF2)
Let p1,p2 be two probability distributions with a unique and common median m. We say
that p1 -mAF2 p2 if and only if the following two conditions hold

(1) P1(i) ≤ P2(i) for i ≺m

(2) P̄1(i) ≤ P̄2(i) for i �m where P̄1, P̄2 denote survival functions of p1 and p2, respec-
tively.

In other words, for i ≺ m relation mAF2 increases according to first - order stochas-
tic dominance and for i � m relation mAF2 increases according to survival dominance.
Thus the more dependence between dimensions, the more multidimensional polarization as
measured by mAF2. Please note that nothing is imposed for the case when when i1 ≤ m1
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and i2 ≥ m2 or when i1 ≥ m1 and i2 ≤ m2. In such a case transfers of probability mass
change polarization on respective dimensions in different directions. Such transfers are not
characterized by any known relation on distributions. For i ≺ m and i � m, however, the
probability mass is moved towards, respectively, lower and higher categories jointly on both
dimensions. Scuh transfers are consistent with either first-order stochastic dominance or
with survival dominance, which are both well-known partial orderings on distributions.

4 Multidimensional polarization measures

We recall three families of multidimensional polarization measures that are consistent with
mAF1 and mAF2 proposed by (Kobus and Kurek 2018). The following two indices are
consistent with mAF1 relation.

Pα, β,γ(p) =

[
(Pα1,β1(p1))γ + (Pα2,β2(p2))γ + · · ·+ (Pαk,βk (pk))γ

k

] 1
γ

, α, β ≥ 1, (6)

where P(p) is the (Abul Naga and Yalcin 2008) α, β index, namely

Pα,β(p) =
Σi<mP (i)α − Σi≥mP (i)β + n+ 1−m

(m− 1)( 1
2
)α −

[
1 + (n−m)( 1

2
)β
]

+ (n+ 1−m)
, α, β ≥ 1

Here α, β are vectors, therefore we put them in bold. When αj → 1, then the index
becomes more sensitive to inequality below the median and it abstracts from it when αj →
∞. Similarly for β. P increases in γ. When γ → −∞ the index places more weight on the
dimension with the smallest polarization, on the other hand, when γ →∞ the index takes
into account the dimensions with the highest polarization.

Pa, b, c(p) =
c1Pa1,b1(p1) + c2Pa2,b2(p2) + · · ·+ ckPak,bk (pk)

Σki=1ci
, (7)

where P(p) is the (Kobus and Milos 2012) a, b index, namely

Pa,b(p) =
aΣi<mP (i)− bΣi≥mP (i) + b(n+ 1−m)

a(m−1)
2

+ b(n−m)
2

; a, b ≥ .

Here a, b, c are vectors. If aj = 1 and bj = 1 for all j, then we get P1,1 which is the
multidimensional version of the absolute value index introduced by (Abul Naga and Yalcin
2008). When aj > bj the index is more sensitive to polarization below the median on the
j-th dimension, whereas the opposite is true if aj < bj and more weight is attached to
polarization above the median.

The following index is consistent with mAF2 relation.

PmAF2(p) =
Σi≺mP(i) + Σi�mP̄(i)

#{i:i≺m}+#{i:i�m}
2

(8)

The index sums cumulative distribution function below the median and the survival
function above the median and is normalized to ensure that the index is between 0 and 1.

Before we introduce measures consistent with somAF1 and somAF2 we propose a set of
axioms with which these measures should be consistent. Then we prove their consistency.

CON P : λ→ R is a continuous function.

NORM The range of P (Ran(P)) is the closed interval [0, 1].

DECOMP There exist f : Ran(P)×Ran(P)× (0, 1)→ R continuous and strictly increas-
ing with respect to the first two coordinates such that for any p1,p2 ∈ λ, α ∈ (0, 1)

P(αp1 + (1− α)p2) = f(P(p1),P(p2), α),
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where αp1 + (1 − α)p2 is a weighted sum of probability distributions, i.e. if p1

assigns mass p1(i) to category i and p2 assigns mass p2(i), then the probability mass
attributed to i in αp1 + (1− α)p2 is αp1(i) + (1− α)p2(i).

ATTRDECOMP There exist f : Ran(P)k → R continuous and strictly increasing with
respect to each coordinate such that for any p ∈ λ we have

P(p) = f(P(p1),P(p2), . . . ,P(pk))

where
P(pj) = P(pj ⊗ pj ⊗ · · · ⊗ pj︸ ︷︷ ︸

k times

)

where p⊗ q denotes product measure of p and q.

ADDSEP Let P fulfill ATTRDECOMP. Thus P(p) = f(P(p1),P(p2), . . . ,P(pk)). ADDSEP
further requires that function f has the form f(x) =

∑k
j=1 fj(xj).

EQUALsomAF1 Let P be consistent with somAF1 relation i.e. p1 ≺somAF1 p2 =⇒
P(p1) < P(p2).

EQUALsomAF2 Let P be consistent with somAF2 relation i.e. p1 ≺somAF2 p2 =⇒
P(p1) < P(p2).

CATADD Let p2,p3 be such distributions that pj2(1) = 0, p2((i1, . . . , ij + 1, . . . , ik)) =

p1((i1, . . . , ij , . . . , ik)) for 1 ≤ ij ≤ nj , pj3(nj + 1) = 0, p3((i1, . . . , ij , . . . , ik)) =

p1((i1, . . . , ij , . . . , ik)) for 1 ≤ ij ≤ nj and let q1,q2,q3 be obtained in the same way
then P(p1) ≤ P(q1) ⇐⇒ P(p2) ≤ P(q2) ⇐⇒ P(p3) ≤ P(q3).

SLIDE Let p1 be such distribution that pj1(1) = 0, let p2((i1, . . . , ij , . . . , ik)) = p1((i1, . . . , ij+

1, . . . , ik)) for ij < nj and pj2(nj) = 0, then P(p1) ≤ (≥)P(q) ⇐⇒ P(p2) ≤ (≥)P(q).

CON is a natural technical assumption. NORM means that the index achieves lowest
value (zero) for the most equal distribution (i.e. all mass in one category) and highest value
(one) for the most unequal distribution (i.e. most bi-polarized distribution). DECOMP
means that the index is decomposable by population subgroups, namely, that it is a function
of the weighted mean of the value of indices in subgroups, with weights corresponding to
subgroups’ population size (Shorrocks 1984, Kobus and Milos 2012). ATTRDECOMP, on
the other hand, means that the index is decomposable into unidimensional indices on each
dimension. The notion originated from the contribution by (Abul Naga and Geoffard 2006)
and allows for the evaluation of each dimension’s contribution to overall inequality. (Zhong
2009) applies this decomposition in the health – income context. In addition, ADDSEP
states that the index is an additive function of unidimensional indices. Two EQUAL axioms
ensure consistency with, respectively, Definitions 3 and 4.

The next two axioms involve operations that apply to a single dimension and such
that they preserve the original dominance relations on (multidimensional) distributions.
CATADD involves an operation which adds empty category to one dimension either below
the lowest category or above the highest category, whereas SLIDE moves probability mass to
empty categories so the medians of two distributions agree (provided there are enough empty
categories). CATADD and SLIDE have been recently introduced by (Sarkar and Santra
2018) who show that these axioms allow to compare distributions with different medians
through AF criterion. Please note that a significant restriction in Definition 1 is that there
has to be a common median. mAF1 and mAF2 can be extended by incorporating SLIDE,
namely, by moving a whole distribution along a coordinate ifm2 �m1, h1 +h2 �m2−m1,
where h1

j = sup{i ≤ nj |pj1(i) 6= 0} and h2
j = inf{i ≥ 1|pj(i)2 6= 0} i.e. the number of empty

categories on respective sides of distributions must be greater than the difference between
medians. Here empty categories must exist, one cannot add them like in CATADD because
it potentially removesmAF -type of dominance. It is a technical issue, but in case of somAF ,
where the summation of survival function starts from the median adding zero category at
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the end does not matter. Therefore, for somAF1 and somAF2, both CATADD and SLIDE
can be used, and any two distributions with differing medians can be compared.

We now introduce two indices consistent with, respectively, somAF1 and somAF2 and
show that they have the desired properties.

Lemma 1. The following index

PsomAF1
a,b,c (p) =

c1Psoa1,b1(p1) + c2Psoa2,b2(p2) + · · ·+ ckPsoak,bk (pk)

Σki=1ci
, (9)

where Psoai,bi(p) is

Psoa,b(p) =
a(n−m)Σi<mP (i) + aΣi<mCS(P, i,m) + b(n+m)Σi≥mP̄ (i)− bΣi≥mCS(P̄ , i,m)

supm{
a(m−1)(2n−m)

4
+ b(n−m)(n+m+1)

4
}

.

(10)
fulfills CON, NORM, DECOMP, ATTRDECOMP, EQUALsomAF1, ADDSEP and SLIDE.
It fulfills CATADD if n = inf{i|P (i) = 1} − sup{i ≥ 0|P (i) = 0}.

Proof. The fact that PsomAF2
a,b,c fulfills CON and DECOMP is obvious since index is a linear

function. It is also straightforward to check that it fulfills ATTRDECOMP. From the fact
that Psoa,b is increasing with CS(P ) we can conclude that it fulfills EQUALsomAF1. Let
us check NORM axiom. Let p and q be, respectively, the best and the worst distributions
according to AF, that is q has all probability mass in median category, while p has half
minus infinitesimal of the mass in first category, infinitesimal mass in median and half in
the last. We have Psoa,b(q) = 0

supm{
a(m−1)(2n−m)

4
+
b(n−m)(n+m+1)

4
}

= 0 and supm Psoa,b(p) =

supm
aΣi<m(n−m+i) 1

2
+bΣi≥m(n+m−i) 1

2
− bm

2

supm{
a(m−1)(2n−m)

4
+
b(n−m)(n+m+1)

4
}

=
supm{

a(m−1)(2n−m)
4

+
b(n−m)(n+m+1)

4
}

supm{
a(m−1)(2n−m)

4
+
b(n−m)(n+m+1)

4
}

= 1. Since

PsomAF1
a,b,c is weighted mean and it is also normalized. Let us now take distributions p and

q such that p(1) = q(n) = 0 and p(i + 1) = q(i). We have that P (i + 1) = Q(i) and
P̄ (i+ 1) = Q̄(i) and we obtain

Psoa,b(p) =
aΣi<m(n−m+i)P (i)+bΣi≥m(n+m−i)P̄ (i)

supm{
a(m−1)(2n−m)

4
+
b(n−m)(n+m+1)

4
}

=

=
aΣi+1<m(n−m+i+1)P (i+1)+bΣi+1≥m(n+m−i−1)P̄ (i+1)

supm{
a(m−1)(2n−m)

4
+
b(n−m)(n+m+1)

4
}

=

=
aΣi<m−1(n−(m−1)+i)Q(i)+bΣi≥m−1(n+(m−1)−i)Q̄(i)

supm{
a(m−1)(2n−m)

4
+
b(n−m)(n+m+1)

4
}

= Psoa,b(q).

PsomAF1
a,b,c is a weighted mean of unidimensional indices Psoa,b(p) that agree with second-

order AF (Definition 2). It is easier to interpret this index re-writing it in the following
form.

Corollary 1. We can also write Psoa,b(p) as

Psoa,b(p) =
aΣi<m(n−m+ i)P (i) + bΣi≥m(n+m− i)P̄ (i)

supm{
a(m−1)(2n−m)

4
+ b(n−m)(n+m+1)

4
}

. (11)

Psoa,b(p) combines cdfs and survival functions with appropriate weights. Combining
SLIDE with NORM posed the biggest challenge in deriving these weights. The most com-
mon procedure in fulfilling NORM is subtracting the lowest value and dividing it by the
range of an index. The denominator then depends on the weights. SLIDE requires weights
at P (i) to be of the form f(i−m). Then the denominator also depends on m and SLIDE
changes m, which may potentially reverse the direction of the ranking of distributions im-
plied by indices. To solve this problem we use a global norm of the index, that is, we take
a supremum of the values of indices for all medians and get rid of dependence on m in the
denominator. CATADD requires that weights do not depend on the total number of cate-
gories but they depend on the number of categories between the first non-empty category
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and the last non-empty category (which is defined formally in Lemma 1. Finally, to fulfill
EQUALsomAF1 we need weights to be increasing/decreasing and nonnegative.

Lemma 2. The following index

PsomAF2
a,b (p) =

Σi≺maiP(i) + Σi�mbiP̄(i)

C
(12)

where ai = aΠk
j=1(nj −mj + ij), bi = bΠk

j=1(nj +mj − ij), C = supm{ 1
2
(aΣi≺mΠk

j=1(nj −
mj + ij) + bΣm�i≺nΠk

j=1(nj + mj − ij))} fulfills CON, NORM, DECOMP, SLIDE, and
EQUALsomAF2. It also fulfills CATADD (with respect to attribute j) if nj = inf{i|P̄ j(i) =

0} − sup{i ≥ 0|P j(i) = 0}.

Proof. The fact that PsomAF2
a,b fulfills CON and DECOMP is obvious since it’s linear func-

tion. From the fact that PsomAF2
a,b is increasing with CS(P) (it follows from the fact that

weights at P(i) are increasing and at P̄(i) they are decreasing) we can conclude that it ful-
fills EQUALsomAF2. Let us check NORM axiom. Let p and q be the best and the worst
distributions according to AF, that is q has all probability mass in median category, while
p has half minus infinitesimal of the mass in first category, infinitesimal mass in median
and half of the mass in the last (according to �). We have PsomAF2

a,b (q) = 0
C

= 0 and

supm PsomAF2
a,b (p) =

supm{ 1
2

(aΣi≺mΠkj=1(nj−mj+ij)+bΣm�i≺nΠkj=1(nj+mj−ij))}
C

= C
C

= 1. We
note that by i + 1 = (i1, . . . , ij + 1, . . . , ik). Let us now take distributions p,q such that
pj(1) = 0, qi = pi+1 and qj(nj) = 0. We have that api+1 = a(nj−mj+ij+1)Πk

l 6=j(nl−ml+

il) = a(nj−(mj−1)+ij)Π
k
l 6=j(nl−ml+il) = aqi , b

p
i+1 = b(nj+mj−ij−1)Πk

l 6=j(nl+ml−il) =

b(nj + (mj − 1)− ij)Πk
l6=j(nl +ml − il) = bqi and finally

PsomAF2
a,b (p) =

Σi≺ma
p
i
P(i)+Σi�mb

p
i
P̄(i)

C
=

=
Σi+1≺ma

p
i+1P(i+1)+Σi+1�mb

p
i+1P̄(i+1)

C
=

=
Σi≺m−1a

q
i
Q(i)+Σi�m−1b

q
i
Q̄(i)

C
= PsomAF2

a,b (q)

PsomAF2
a,b sums multidimensional cdfs and survival functions with weights being a mul-

tiplication of weights that would hold on each dimension if it were a unidimensional index
consistent with second-order unidimensional AF or, equivalently ChM.

5 Statistical inference and Estimation

In this section we present how to estimate three multidimensional polarization indices in-
troduced by (Kobus and Kurek 2018) for consistency with mAF1 and mAF2 i.e. Pα, β,γ(6),
Pa, b, c (7), PmAF2 (8), and two indices introduced here for consistency with somAF1 and
somAF2, namely PsomAF1

a,b,c (9) and PsomAF2
a,b (12). We establish their large sample distri-

bution. We consider the following setting.
Each individual chooses one and only one answer in every category, which gives a unique

response in the set of all states I. We will assume that there are N independent responses
(N1...11, N1...12, . . . , Nn1...nk−1nk ) defining the vector of frequencies p̂. In such a model, I
has joint multinomial distribution with parameters p = (p1...11, p1...12, . . . , pn1...nk−1nk ) and
N . Empirical probability distribution is the following

p̂i1i2...ik =
1

N
ΣNt=11(It1 = i1, I

t
2 = i2, . . . , I

t
k = ik) =

Ni1i2...ik
N

,

In (Formby et al. 2004) it is shown that multinomial distributions are asymptotically
distributed as normal with mean p and covariance matrix Σ, where (for I = {1, 2, . . . , n1}×
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{1, 2, . . . , n2} × · · · × {1, 2, . . . , nk}) we assume the following notation

p =


p1...1

p1...12

...
pn1...nk−1nk

 ,

Σ =


p1...11(1− p1...11) −p1...11p1...12 · · · −p1...11pn1...nk−1nk

−p1...12p1...11 p1...12(1− p1...12) · · · −p1...12pn1...nk−1nk

...
...

. . .
...

−pn1...nk−1nkp1...11 −pn1...nk−1nkp1...12 · · · pn1...nk−1nk (1− pn1...nk−1nk )

 .

That is, lth row/column corresponds to (i1, i2, . . . ik) category, where l = ik + Σk−1
j=1 (ij −

1)nj+1nj+2 . . . nk. We have ik = lmodnk + nk1nk|l, lk = l−ik
nk

and ij − 1 = lj+1modnj ,

lj =
lj+1−(ij−1)

nj
for 1 ≤ j < k. For example, for k = 3 and (n1, n2, n3) = (6, 5, 8), the

28th category is 28 = 4 + 3 × 8 i.e. (0 + 1, 3 + 1, 4) = (1, 4, 4), and the 134th category is
134 = 6 + 16× 8 = 6 + 1× 8 + 3× (5× 8) i.e. (3 + 1, 1 + 1, 6) = (4, 2, 6).

The multivariate, multinomial distributions of two samples can be compared by stacking
the probabilities in respective probability vectors

Ê = p̂− q̂ (13)

Under the null hypothesis of homogenous distributions,

Ê d→ N
(

0,
Np +Nq
NpNq

Σ

)
. (14)

Using Continuous Mapping Theorem we get that under appropriate assumptions F (P̂)

will be a consistent estimator of F (P). Let us define n1n2 . . . nk-dimensional Jacobian
(horizontal) vector of the transformation F ,

J =

(
∂F

∂P1...11
,

∂F

∂P1...12
, . . .

∂F

∂Pn1...nk−1nk

)
.

N independent responses (N1...11, N1...12, . . . , Nn1...nk−1nk ) are jointly distributed from a
multinomial distribution with parameters N and p and such that cov(

√
np̂) = Σ(p), where

Σ(p) is a finite positive semi-definite matrix.

Theorem 1. For multinomial distribution P and function F which is continuously differ-
entiable at P and does not involve total number of observations N , we have that

√
n(F (P̂)− F (P))

d→N (0, JLΣLTJT )

where J = J(P) is Jacobian vector evaluated at P, and L = (lij)1≤i,j≤n1n2...nk is such that
lij = 1 if j ≡ (j1, j2 . . . jk) � (i1, i2, . . . ik) ≡ i and 0 otherwise where � is lexicographical
order.6

6The result is unchanged when m is replaced by τ .
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Proof. For k = 2 and (n1, n2) = (3, 3), L is the following

L =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 1 0 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0

1 0 0 1 0 0 1 0 0

1 1 0 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1


.

In general case let Lt be square matrix of dimension t satisfying ltij = 1 if i ≥ j and ltij = 0

otherwise. We define L recursively by setting Lnk−tt+1 = Lnk−t ⊗ Lnk−t+1
t , where ⊗ denotes

Kronecker product (for any a× b matrix A and c× d matrix B, A⊗B is ac× bd matrix C
such that c(b(i−1)+k)(d(j−1)+l) = aijbkl). Next we let Lnk1 = Lnk and finally L = Ln1

k .
From Central Limit Theorem we have that

√
n(p̂−p)

d→ N (0,Σ). It is straightforward
to check that for

P̂ = Lp̂,P = Lp

we have
√
n(P̂−P)

d→ N (0, LΣLT ). From Law of Large Numbers P̂ converges in probability
to P and from Continuous Mapping Theorem we see that J(P̂) converges in probability to
J(P) (due to continuous differentiability). Finally, from the delta method we obtain

√
n(F (P̂)− F (P))

d→N (0, JLΣLTJT ).

A consistent estimator for Σ is

σ̂(i1i2...ik)(i1i2...ik) =
Ni1i2...ik

N
(1− Ni1i2...ik

N
)

and
σ̂(i1i2...ik)(j1j2...jk) = −Ni1i2...ikNj1j2...jk

N2
if it 6= jt for some 1 ≤ t ≤ k.

It follows that standard error σ is equal to

σ =

√
J(P̂)LΣ̂LTJ(P̂)T

n
.

We would get similar result if we substituted matrix L by any matrix M with constant
coefficients. For our indices using P̄ it will be useful to present following remark.

Remark 1. For multinomial distribution P, with survival function P̄ and function F which
is continuously differentiable at P (which implies that it is also differentiable at P̄) and does
not involve total number of observations N , we have that

√
n(F (P̂, ˆ̄P)− F (P, P̄))

d→N (0, JMΣMTJT )

where J = J(P, P̄) is Jacobian vector evaluated at P, P̄, L = (lij)1≤i,j≤n1n2...nk is such that
lij = 1 if j ≡ (j1, j2 . . . jk) � (i1, i2, . . . ik) ≡ i and 0 otherwise, U = (uij)1≤i,j≤n1n2...nk

is such that lij = 1 if j ≡ (j1, j2 . . . jk) � (i1, i2, . . . ik) ≡ iand 0 otherwise where � is

lexicographical order and M =

(
L

U − I

)
. 7

The Jacobian vector for F = Pa,b is

J =
2

a(m− 1) + b(n−m)
(a(1), a(2), . . . , a(m−1),−b(m),−b(m+1), . . . ,−b(n))

7The result is unchanged when m is replaced by τ .
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and for F = Pa,b,c it is

J = (jl)1≤l≤n1n2...nk ,

where

jn1n2...nt−1itnt+1...nk =
ct

Σki=1ci

2

at(mt − 1) + bt(nt −mt)
(at1it<mt − bt1it≥mt)

and is equal to 0 for all other values of jl. Similarly, the Jacobian vector for F = Pα,β is

J = C(αPα−1
1 , αPα−1

2 , . . . , αPα−1
m−1,−βP

β−1
m ,−βPβ−1

m+1 . . . ,−βP
β−1
n ),

where

C =
1

(m− 1)( 1
2
)α − (n−m)( 1

2
)β + n−m

,

and for F = Pα,β,γ it is

J = (jl)1≤l≤n1n2...nk ,

where

jn1n2...nt−1itnt+1...nk = Dt
(
αtP

αt−1
n1n2...nt−1itnt+1...nk

1it<mt − βtP
βt−1
n1n2...nt−1itnt+1...nk

1it≥mt
)

and Dt = 1
k
Ct(Pα,β,γ(P))1−γ(Pαt,βt(Pt))γ−1 and is equal to 0 for all other values of jl.

Jacobian vector for F = PmAF2 is vector J such that Ji = 2
#{i:i≺m}+#{i:i�m} for

i ≡ i ≺m or i− n1n2 . . . nk ≡ h �m and Ji = 0 otherwise.
Similarly for F = PsomAF2

a,b Jacobian vector is given by

Ji =
ai
C

for i ≡ i ≺m,

Ji =
bi
C

for i− n1n2 . . . nk ≡ h � m and Ji = 0 otherwise, where ai, bi, C are defined as in Lemma
2.

Finally for F = PsomAF1
a,b,c Jacobian vector is given by

J = (jl)1≤l≤n1n2...nk ,

where

jn1n2...nt−1itnt+1...nk =
ct

Σki=1ci

4

bt(n+ 2)(n− 1)
(at(nt −mt + it)1it<mt − bt(nt +mt − it)1it≥mt)

and is equal to 0 for all other values of jl

6 Generalization to any quantile

Median, as a half-point of distribution is definitely most interesting of the quantiles, but
there may be other points of interest, for example quartiles. mAF and somAF relations
can be generalised to account for this. First such generalisation of unidimensional AF was
in fact proposed by Mendelson in the 1980s (Mendelson 1987) but was largely overlooked by
the literature. (Kobus and Kurek 2018) apply his extension to mAF1 and mAF2 (Section 6
in their paper). In fact, such generalisation makes even more sense for second-order relations
because there we measure not only concentration around the median, but also around some
other categories below and above the median. To this end, we note that in the definition of
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CS(P, i,m) a vector of medians can be replaced by a vector of arbitrary quantiles and the
definition remains valid.

Definition 7. Quantile somAF1 (somqAF1)
Let p1,p2 be two probability distributions with a unique and common τ -quantile q for τ =

(τ1, τ2, . . . , τk), that is q1 = q2 where (q1)i = inf{j|P1(j) ≥ τi} and (q2)i = inf{j|P2(j) ≥
τi}. We say that p1 -somqAF1 p2 if and only if the following two conditions hold

(1) CS(P j1 , i, qj) ≤ CS(P j2 , i, qj) for i < qj and for all j,

(2) CS(P̄ j1 , i, qj) ≤ CS(P̄ j2 , i, qj) for i ≥ qj and for all j, where P̄ j1 , P̄
j
2 denote survival

functions of jth marginals of p1 and p2, respectively.

Definition 8. Quantile somAF2 (somqAF2)
Let p1,p2 be two probability distributions with a unique and common τ -quantile q. We say
that p1 -somqAF2 p2 if and only if the following two conditions hold

(1) CS(P1, i,q) ≤ CS(P2, i,q) for i ≺ q

(2) CS(P̄1, i,q) ≤ CS(P̄2, i,q) for i � q where P̄1, P̄2 denote survival functions of p1

and p2, respectively.

Please note that this is different from extension brought about by CATADD and SLIDE.
In order for two distributions to be compared according to somqAF1 or somqAF2 they have
to have the same quantiles in CS(P, i,q) and CATADD and SLIDE ensure that we can do
this. In this section what we do is to say that the choice of q can be any, not necessarily
the median.

The following indices are consistent with Definitions 7 and 8.

Remark 2. The following index

PsomqAF1
a,b,c (p,q) =

c1Psoa1,b1(p1, q1) + c2Psoa2,b2(p2, q2) + · · ·+ ckPsoak,bk (pk, qk)

Σki=1ci
, (15)

where Psoai,bi(p, q) is

Psoqa,b (p, q) =
a(n− q)Σi<qP (i) + aΣi<qCS(P, i, q) + b(n+ q)Σi≥qP̄ (i)− bΣi≥qCS(P̄ , i, q)

supq{τ
a(q−1)(2n−q)

2
+ (1− τ) b(n−q)(n+q+1)

2
}

.

We can also write

Psoqa,b (p, q) =
aΣi<q(n− q + i)P (i) + bΣi≥q(n+ q − i)P̄ (i)

supq{τ
a(q−1)(2n−q)

2
+ (1− τ) b(n−q)(n+q+1)

2
}
.

fulfills CON, NORM, DECOMP, ATTRDECOMP, EQUALsomqAF1 (i.e its quantile ver-
sion), ADDSEP and SLIDE. It fulfills CATADD if n = inf{i|P (i) = 1} − sup{i ≥ 0|P (i) =

0}.

Remark 3. The following index

PsomqAF2
a,b (p,q) =

Σi≺qaiP(i) + Σi�qbiP̄(i)

C
(16)

where ai = Πk
j=1(nj−qj + ij), bi = Πk

j=1(nj +qj− ij), C = supq{min τjΣi≺qΠk
j=1(nj−qj +

ij) + (1−max τj)(Σq�i≺nΠk
j=1(nj + qj − ij)−1)} fulfills CON, NORM, DECOMP, SLIDE,

and EQUALsomqAF2 (i.e. its quantile version). It also fulfills CATADD (with respect to
attribute j) if nj = inf{i|P̄ j(i) = 0} − sup{i ≥ 0|P j(i) = 0}.

7 Empirical application

In this section we illustrate the use of multidimensional polarization relations and measures
with an empirical application. The application is the measurement of socio – economic
inequalities using data from Survey of Health, Ageing and Retirement in Europe (SHARE).
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SHARE is a multi-country representative survey of non-institutionalized individuals aged
50 and and spouses regardless of age. It is a cross-national panel database of micro data on
health, socio-economic status and social and family networks. The first wave of SHARE was
collected in 2004/5. It is a longitudinal survey with new cohorts of participants being added
over time. Individual interviews are conducted approximately every two years. The analysis
is based on date from Wave 6 that was collected in year 2015. We measure SES-health
inequalities, when SES is proxied by educational attainment and health by self-reported
health status. The specific indicators are presented in Table 1.

Table 1: Ordinal indicators of health and education
Dimension Indicator Level Construction
Education Highest educational 1 Pre-primary education

level attained 2 Primary education
3 Lower secondary education
4 (Upper) secondary education
5 Post-secondary non-tertiary education
6 First stage of tertiary education
7 Second stage of tertiary education (research)

Health Self-reported 1 Excellent
health status 2 Very good

3 Good
4 Fair
5 Poor

Notes: Data come from Wave 6 of SHARE.

18 countries took part in Wave 6. For each pair of countries we look for a bidimensional
dominance somqAF1 at either q = .25, q = .5 or q = .75. Please note that due to CATADD
and SLIDE we can always compare two countries in terms of somqAF1. We find 15 cases
(out of 171 possible) in which somqAF1 dominance holds. This gives around 10% of cases;
in fact, there is a bit more because in case there was dominance for, say, q = .25 and q = .5

we choose a lower quantile. The results are summarized in Table 2. Isreal emerges as the
country which is dominant in most cases, that is, it is the most bidimensionally unequal.

Table 2: Results of B -somqAF1 A

Dominance q q
A-B Education Health
GRC - AUT .5 .75
ISR - AUT .5 .5
ISR - GER .25 .5
SWE - SWZL .5 .5
SWE - POR .25 .5
ISR - SPN .25 .75
SPN - CZR .75 .75
FRA - IT .25 .75
ISR - IT .25 .75
GRC - LUX .75 .75
GRC - EST .5 .5
ISR - BEL .25 .5
ISR - CZR .25 .75
ISR - SVN .5 .75
ISR - EST .5 .5

Notes: Own calculations based on
SHARE data (Wave 6).

Table 3 presents the values of indices consistent with somqAF1. The subscripts inform
about different weights (i.e. 1, 10) attached to categories below and above a given quantile
(Table 2. The country A dominates country B, therefore its value is higher in each case. In
case of comparisons such as Sweden – Czech Republic (SWE – CZE), Greece – Luxembourg
(GRC – LUX), or Israel – Belgium (ISR – BEL) sensitivity to bottom and top inequality
plays no role; the results are more or less the same no matter the weights. For another
group of comparisons such as Greece – Estonia (GRC – EST) or Spain – Czech Republic
(ESP – CZE) the differences are the smallest when mostly top of the distribution is taken
into account and the highest when the bottom is. This suggests that it is mostly in lower
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categories of health and education where these countries differ in terms of inequality. On
the other hand, for Greece – Austria (GRC – AUT), Sweden – Portugal (SWE – PRT) or
Israel – Italy (ISR – ITA) a different pattern emerges: the differences are the smallest when
the whole distribution is considered with equal weight (PsomqAF1

1,1,1 ) and they increase both
at the bottom (PsomqAF1

10,1,1 ) and at the top (PsomqAF1
1,10,1 ). This might suggest that not only

the amount of mass away from a given quantile is important, but also its concentration.
Overall, we observe highest differences in the last column, which indicates that it is most
often inequality in the bottom of the distribution where countries differ.

Table 3: Indices consistent with -somqAF1 and standard errors
Dominance PsomqAF1

1,1,1 PsomqAF1
10,1,1 PsomqAF1

1,10,1

A-B PA (SE) PB (SE) PA (SE) PB (SE) PA (SE) PB (SE)
GRC-AUT .56 (.0037) .44 (.0044) .62 (.0039) .42 (.0039) .47 (.0061) .40 (.0076)
ISR-AUT .52 (.0052) .39 (.0043) .47 (.0066) .36 (.0049) .56 (.0094) .42 (.0069)
ISR-DEU .54 (.0052) .35 (.0037) .53 (.0073) .27 (.0040) .56 (.0082) .41 (.0053)
SWE-CHE .47 (.0039) .34 (.0044) .50 (.0053) .37 (.0059) .44 (.0061) .31 (.0063)
SWE-PRT .48 (.0041) .39 (.0077) .52 (.0056) .35 (.0083) .44 (.0052) .41 (.0098)
ISR-ESP .54 (.0057) .40 (.0033) .56 (.0065) .51 (.0044) .55 (.0101) .41 (.0060)
ESP-CZE .50 (.0034) .37 (.0032) .51 (.0031) .34 (.0030) .52 (.0079) .45 (.0083)
FRA-ITA .51 (.0045) .40 (.0036) .48 (.0047) .40 (.0042) .51 (.0067) .39 (.0054)
ISR-ITA .54 (.0057) .40 (.0036) .56 (.0065) .40 (.0042) .55 (.0101) .39 (.0054)
GRC-LUX .56 (.0033) .48 (.0060) .57 (.0033) .48 (.0054) .51 (.0078) .45 (.0135)
GRC-EST .50 (.0035) .36 (.0034) .55 (.0047) .28 (.0032) .47 (.0053) .43 (.0055)
ISR-BEL .54 (.0052) .42 (.0034) .53 (.0073) .40 (.0042) .56 (.0082) .43 (.0043)
ISR-CZE .54 (.0057) .39 (.0034) .56 (.0065) .36 (.0035) .55 (.0101) .43 (.0065)
ISR-SVN .53 (.0053) .38 (.0035) .49 (.0057) .39 (.0034) .56 (.0110) .40 (.0073)
ISR-EST .52 (.0052) .36 (.0034) .47 (.0066) .28 (.0032) .56 (.0094) .43 (.0055)

Notes: Own calculations based on SHARE data (Wave 6).

Table 4 shows the results for indices consistent with somqAF2 relation (i.e. which
takes into account dependence between dimensions). Interestingly, the rankings obtained
by PsomqAF2 indices coincide with the ones obtained by PsomqAF1 indices (Table 3), sug-
gesting that the dimensions may be weakly dependent among these countries. We observe
more reversals of this trend with higher weight given to top of the distribution. These are
GRC – AUT, SWE – PRT, ESP – CZE, and GRC – EST. Important to note is that the
values of somqAF2 indices are all significantly lower than the values of somqAF1 indices.
This indicates that probability mass is distributed in parts of the joint distribution in which
unidimensional dominances give conflicting results (please recall our discussion below Def-
inition 6). Univariate indices (and a combination of those such as PsomqAF1) attributes
all this mass to marginal distributions, whereas from the point of view of joint inequality,
the presence of mass in these parts lowers inequality. To sum up, dependence between
health and education seems to matter for the level of inequality, but not for the ranking of
distributions.

Table 4: Indices consistent with -somqAF2 and standard errors
Dominance PsomqAF2

1,1 PsomqAF2
10,1 PsomqAF1

1,10

A-B PA (SE) PB (SE) PA (SE) PB (SE) PA (SE) PB (SE)
GRC-AUT .29 (.0051) .21 (.0040) .35 (.0070) .23 (.0048) .18 (.0058) .19 (.0073)
ISR-AUT .21 (.0055) .16 (.0033) .16 (.0066) .12 (.0034) .26 (.0092) .19 (.0059)
ISR-DEU .33 (.0086) .23 (.0040) .23 (.0094) .13 (.0032) .38 (.0113) .29 (.0058)
SWE-CHE .18 (.0035) .13 (.0030) .19 (.0050) .13 (.0041) .18 (.0052) .13 (.0047)
SWE-PRT .25 (.0050) .27 (.0092) .22 (.0064) .20 (.0082) .27 (.0066) .30 (.0122)
ISR-ESP .38 (.0111) .33 (.0055) .33 (.0143) .46 (.0093) .43 (.0178) .22 (.0069)
ESP-CZE .23 (.0031) .16 (.0024) .27 (.0039) .16 (.0027) .14 (.0042) .16 (.0049)
FRA-ITA .32 (.0080) .28 (.0056) .25 (.0082) .28 (.0077) .37 (.0121) .28 (.0077)
ISR-ITA .38 (.0111) .28 (.0056) .33 (.0143) .28 (.0077) .43 (.0178) .28 (.0077)
GRC-LUX .28 (.0040) .22 (.0056) .32 (.0048) .25 (.0067) .16 (.0038) .12 (.0051)
GRC-EST .19 (.0033) .14 (.0021) .20 (.0049) .09 (.0019) .18 (.0046) .21 (.0046)
ISR-BEL .33 (.0086) .26 (.0040) .23 (.0094) .17 (.0039) .38 (.0113) .30 (.0053)
ISR-CZE .38 (.0111) .27 (.0051) .33 (.0143) .20 (.0054) .43 (.0178) .35 (.0091)
ISR-SVN .27 (.0071) .20 (.0034) .26 (.0087) .21 (.0042) .29 (.0121) .15 (.0052)
ISR-EST .21 (.0055) .14 (.0021) .16 (.0066) .09 (.0019) .26 (.0092) .21 (.0046)

Notes: Own calculations based on SHARE data (Wave 6).
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In Table 5 we report the values of test statistics for the comparisons presented in Tables
3 and 4. Most of the comparisons is highly significant. This is also true for mqAF1 and
mqAF2, for which we report the values of test statistic in Table 6. We note that the rankings
imposed by somqAF1 and mqAF1 agree and the same holds for somqAF2 and mqAF2.
Sometimes the values of statistics changes e.g. it is small for mqAF for weights (10, 1,
1) and high in somqAF . This shows the added value of differences in mass concentration
between distribution (i.e. increased bipolarity), but in general for the ranking itself it is the
first order comparison (i.e. increased spread) which is dominant.

Table 5: The values of test statistic for countries compar-
isons (somqAF1 and somqAF2)
Dominance PsomqAF1

a,b,c PsomqAF2
a,b

A-B 1,1,1 10,1,1 1,10,1 1,1 10,1 1,10
GRC-AUT 2.93 35.25 6.99 11.93 14.47 [-0.15]
ISR-AUT 18.95 13.54 12.00 9.24 6.30 6.60
ISR-DEU 28.96 31.62 14.94 11.06 [1.52] 7.09
SWE-CHE 22.18 16.58 14.60 11.27 8.71 6.79
SWE-PRT [1.72] 17.90 2.55 [-1.18] 2.36 -2.09
ISR-ESP 22.33 6.65 12.46 4.53 -7.30 1.99
ESP-CZE 28.46 40.01 5.53 19.24 23.35 -2.61
FRA-ITA 18.40 13.62 13.47 4.41 -2.09 6.45
ISR-ITA 2.43 21.31 14.17 8.17 3.50 7.86
GRC-LUX 11.14 13.75 3.58 9.14 8.55 6.02
GRC-EST 29.61 46.79 4.95 13.23 2.70 -4.39
ISR-BEL 18.52 15.41 13.91 7.58 5.96 6.14
ISR-CZE 23.36 27.48 [1.02] 9.32 9.16 4.31
ISR-SVN 23.07 17.06 12.36 9.72 5.29 [1.70]
ISR-EST 26.49 25.42 11.93 13.44 11.34 5.31

Notes: Own calculations based on SHARE data (Wave 6). [..] de-
notes insignificant values of test statistic.

Table 6: The values of test statistic for countries compar-
isons (mqAF1 and mqAF2)
Dominance PmqAF1−KM

a,b,c PmqAF2
a,b

A-B 1,1,1 10,1,1 1,10,1 1,1 10,1 1,10
GRC-AUT 21.18 4.49 6.16 13.53 16.23 [-0.38]
ISR-AUT 18.20 29.86 12.17 9.49 6.55 6.75
ISR-DEU 28.94 35.38 14.30 11.18 [1.92] 6.91
SWE-CHE 21.46 36.53 15.16 11.71 8.81 7.43
SWE-PRT 12.94 35.41 2.18 [-1.41] 2.60 -2.46
ISR-ESP 24.13 67.78 15.05 5.32 -6.77 11.91
ESP-CZE 3.61 44.85 5.85 21.54 25.17 [-1.75]
FRA-ITA 17.56 37.79 14.56 4.44 -2.56 7.12
ISR-ITA 22.06 62.42 16.90 9.15 2.92 9.56
GRC-LUX 11.84 15.12 3.99 9.91 9.43 7.70
GRC-EST 34.91 56.97 3.89 15.71 23.07 -6.06
ISR-BEL 17.92 27.26 14.03 8.33 6.22 6.93
ISR-CZE 24.68 52.80 12.40 [1.24] 9.26 5.19
ISR-SVN 23.19 38.72 14.21 9.84 6.43 11.15
ISR-EST 29.31 41.50 12.43 15.36 12.64 5.33

Notes: Own calculations based on SHARE data (Wave 6). [..] de-
notes insignificant values of test statistic.

8 Conclusions

In this paper we develop the set of tools available to researchers who want to measure
inequality in several ordinal indicators. Given numerous results concerning inequality in
single ordinal indicators that have appeared mostly in the last decade, it is natural to
develop inequality measurement theory for ordinal data into a multidimensional setting.
This paper together with (Kobus and Kurek 2018) constitute an important step in this
direction.

From the perspective of the particular application such as SES – health what seems as
a very desirable property and an open question for future research is the decomposition of
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multidimensional inequality measures. Since the dependence between health and income
(or education) receives a lot of attention in the literature on socio – economic inequality
in health, it would be very useful to be able to distinguish in the numerical sense (here
we do this in a more qualitative sense) the impact of dependence on joint inequality from
the impact of health and income inequalities. The added value of the framework presented
here and developed in the last decade is zero assumptions on the form of dependence, which
is not true for more parametric approaches. This of course always comes at the expense
of conclusiveness. This line of research, but in a cardinal framework, has been started
by (Abul Naga and Geoffard 2006) who introduce a notion of attribute decomposability,
namely, decomposability of inequality measures into inequalities in given attributes and a
measure of dependence between attributes.
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