
INE PAN Working Paper Series  

 

 

 
 

Paper number 41 

 

Modelling health indicators in a joint 

framework via factor copula models 
 

Martyna Kobus, Olga Półchłopek 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Warsaw, June 2016 

wp@inepan.waw.pl 



Modelling health indicators in a joint framework via factor copula
models

Martyna Kobus∗†, Olga Półchłopek‡

20th June 2016

Abstract

The problems of ageing societies in advanced countries have recently put emphasis on the evaluation
of health of the elderly. Health is likely to determine job market activity of the increasing parts of the
society. Appropriate modelling of health conditions is therefore key for policymaking, in particular given
that detailed health data are now available via ageing surveys. Thus there has been recently interest
in modelling multiple ordinal health data. Makdisi and Yazbeck (2014) utilise the counting approach,
which requires the transformation of multiple category health indicators into binary and lead to the loss
of information, but also changes the dependence structure. We offer a different approach which does
not have these limitations and is feasible for high-dimensional data (e.g. stochastic dominance methods
are inconclusive for many dimensions (Duclos and Echevin 2012). We use recently developed methods
based on so called vine pair-copula constructions (PCC) (Aas et al. 2009). We estimate a 1-factor copula
model (Nikoloulopoulos and Joe 2015) for 24 health indicators taken from English Longitudinal Study
of Ageing (ELSA) such as self-reported health status, mobility, eyesight, hearing and pain rating and
questions related to emotional health. We show that there are substantial interdependencies in health
data which cannot be neglected by dichotomisation and aggregation, nor can they be detected by the
standard multivariate probit model. t(4)− and t(5)− factor copula model provides the best fit, and
items that measure general optimism are most informative of the underlying factor. Groups are most
heterogeneous along the employment status, with retired and disabled groups showing significantly more
dependence than other groups in items related to mobility and general health status.

Keywords: multiple health indicators; interdependence; factor copulas; vine copulas
JEL codes: I31; D63

Introduction
Nowadays there are increasingly many health indicators available in health and ageing surveys. Such surveys
include detailed information on functional limitations, cognitive, emotional and mental health, and health
measurements such as hypertension, biomarkers etc. However, there are two major measurement problems in
using this rich information. Firstly, researchers often restrict to self-assessed health only (van Doorslaer et al.
1997, van Doorslaer and Koolman 2004, Kunst et al. 2004, Cutler et al. 2015) or they aggregate various health
indicators into a single index of health (e.g. Makdisi and Yazbeck 2014) or analyse various health indicators
separately. This means that the dependence structure is ignored which means the loss of substantial part
of the information on the health distribution. With fixed margins, generally, the more association between
dimensions of wellbeing, the more inequality (Atkinson and Bourguignon 1982), because of higher likelihood
for individuals to suffer from multiple deprivations. Interdependencies thus help to identify opportunities for
policy intervention with the largest efficiency gains. This is particularly relevant for patients suffering from
multiple chronic diseases, which given ageing population will become even more of a focus for public health
policy and spending.
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Secondly, aggregation imposes some form of cardinalization of an often ordinal indicator (e.g. Mackenbach
et al. 2008). Many health indicators are ordinal e.g. widely used self-reported health status, problems with
vision, hearing, communication, speech, cognition, the feeling of pain, anxiety, depression etc. Cardinalization
of ordinal variables has been criticised by Allison and Foster (2004). The choice of a particular numerical
transformation (i.e. scale) of an ordinal indicator is arbitrary, on the other hand, the mean and the variance
are not invariant to monotone transformations. Therefore the results may be often easily reversed when
a different scale is chosen as examples by Allison and Foster (2004), Apouey and Silber (2013), Bond and
Lang (2014) and Kobus (2015) show. This is the main drawback of the standard approach to measuring
socioeconomic inequalities in health, namely, concentration curves, which is developed for ratio-scale variables
and should not be used directly with ordinal data, as rightly criticised by Makdisi and Yazbeck (2014).
Inequality measurement theory has been extended to account for ordinality of the data, but so far mostly
for one health indicator (Allison and Foster 2004, Apouey 2007, Abul Naga and Yalcin 2008, Kobus and
Miłoś 2012, Apouey and Silber 2013, Lazar and Silber 2013, Abul Naga and Stapenhurst 2015, Cowell and
Flachaire 2015, Gravel et al. 2015, Lv et al. 2015, Kobus 2015). There is very few contributions up to
date for multivariate health data: Sonne Schmidt et al. (2015) propose criteria for comparing distributions
which are only tractable in the case of two binary indicators, so their applicability is very restricted. Duclos
and Echevin (2012) propose a robust method for measuring health-income gradient based on dominance
conditions. However, it is unlikely that dominance conditions are conclusive for 40 health indicators which
are available for example in ageing surveys. Therefore, while elegant, these methods may provide little help
for applied health economists.

The most comprehensive treatment of multiple health categories was offered recently by Makdisi and
Yazbeck (2014). They use the insight from the counting approach to multidimensional poverty to measure
the width of health problems i.e. the number of health problems. This further requires transforming each
health indicator into a binary variable. They analyse US and Canadian data on vision, hearing, speech,
emotion and other health indicators and transform them into 0-1 variables. For example, vision problems are
recorded as 1 (the person has vision problems) if he or she has difficulty seeing with glasses. Dichotomization
leads to a substantial loss of information. Moreover, it obscures the dependence structure. The goal of
this paper is to show that interdependencies should not be easily neglected in case of categorical health
data. To this end, we use recently developed factor copula models (Nikoloulopoulos and Joe 2015). These
models omit some of the difficulties we mentioned, because they allow for a flexible modelling of multivariate
distributions and are appropriate for modelling high-dimensional data. Although we cannot fully account
for the ordinality of health data (i.e. in the margins), copula approach enables scale-free modelling of the
dependence structure. We utilise 24 health indicators from Wave 1 and 6 of English Longitudinal Study of
Ageing (ELSA) and provide evidence for stronger dependence of health indicators for both lack of health
problems (lower tail dependence) and severe health problems (upper tail dependence). Thus we obtain a
complex picture of health among the elderly, which cannot be fully reflected by the counting approach, and
is enough to justify a truly multivariate approach to modelling health data.

In more detail, factor copula models we utilise are inspired by the modelling approach based on pair-copula
constructions (PCC). PCC allows to model the dependence between each two dimensions via bivariate copulas
which are building blocks of a multivariate copula. Such decomposition of a multivariate distribution into
bivariate elements lowers substantially the level of integration1 and makes maximum likelihood estimation
feasible for high-dimensional data. Furthermore, distributions with tail dependence and asymmetric tail
dependence can be accommodated using PCC, and such detailed picture of various interdependencies present
in the data provides key information for efficient targeting of most vulnerable groups (multiply deprived).
As Atkinson (2011, p. 326) states: “The copula diagram is helpful in thinking about policies to moderate
the social gradient of health (...).” For example, let us assume that it turns out that for low socioeconomic
status (SES) correlation between BMI and diabetes is stronger than for people with high SES. Yet the true
picture may be that in fact for low BMI, SES is not important and dependence between BMI and diabetes
is the same independent of SES, whereas it is for high BMI that dependence between BMI and diabetes is
much higher for low SES than for high SES, so intervention should target only this group. That is to say,
dependence in lower tail (low BMI) is different from the dependence in upper tail (high BMI); methods based
on multivariate normal distribution and correlation cannot detect this. As another example, it is likely that

1Denoting by d the number of dimensions, instead of d-dimensional integral, with PCC one deals with d unidimensional
integrals.
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dependence between cognitive and mental health indicators might be different from the dependence between
physical and mental health indicators; a modelling approach should allow for such heterogeneity.

The methods used here can be thought of as a generalisation of a standard approach to multivariate
modelling based on multivariate normal distribution (MVN). MVN is a good premise, as many phenomena
in nature evince Gaussian distribution. It arises as a limit of a scaled sum of weakly dependent random
variables with no variable dominating i.e. Central Limit Theorem. It is constructed using the property that
any linear combination of independent Gaussian random variables is Gaussian. As such it is simple and
tractable. However, its limitations such as a requirement of normal margins, lack of negative dependence and
tail dependence, are important from the point of view of applications. Overuse of Gaussian distribution in
risk modelling is criticised, especially in the last few years e.g. it was even called “The formula that killed Wall
Street” in a famous article by Felix Salmon published in Wired magazine. Particularly in finance, income
dispersion is typically uneven or there may exist stock market shares which are dependent only when they
reach high values. To model tail dependence appropriately is key for effective portfolio diversification. Tail
dependence is a property that indicates how the joint probability behaves in extreme, low or high, values.
Upper(lower) tail dependence means that large(low) values of two or more variables occur together more
often. Multivariate Gaussian distribution does not have tail dependence, mass is clustered in the centre, tails
are symmetrical and carry little mass, so they may underestimate the risk. These problems occur both on
univariate and joint levels, so the mismatch caused by applying MVN is compounded when the number of
dimensions increases. Therefore non-Gaussian models might be more appropriate in risk analysis, insurance,
finance and economics. The study of copulas is one way to enter a non-Gaussian world.

A copula is a multivariate probability distribution function with uniform marginals. It is popular due
to the celebrated Sklar’s theorem (Sklar 1959) which states that a copula and marginal distribution charac-
terise the joint distribution. For continuous distributions such representation is unique. Thus copula can be
thought of as a method to construct joint distributions from marginal distributions. This modelling approach
has the advantage of having univariate margins of different types (e.g. with potentially different scale/shape
parameters) and the dependence structure can be modelled separately from univariate margins which leads
to more efficient estimation. It is indeed much more flexible than well-known families of multivariate distri-
butions such as normal, t, Pareto and other. Thus copulas allow for two-step estimation where the two steps
are independent. First, univariate margins are chosen and they can be any e.g. univariate Gaussian and t
for retaining symmetry, gamma for exponential tails, Pareto for heavy tails, Poisson for integer-valued data
etc. Uniform margins are obtained via probability integral transform and in the second step copula is fit to
the joint data. It can be chosen flexibly to model different types of dependence structure (e.g. exchangeable,
conditional independence, both positive and negative dependence) and different types of joint tail behaviour
(e.g. upper tail dependence, lower tail dependence, asymmetric tail dependence).

Despite theoretical elegance, building high-dimensional copulas is considered a difficult problem (Aas et al.
2009). However, this problem has been addressed recently by proposing the called vine pair copula construc-
tions (Aas et al. 2009). The principle is to decompose a multivariate distribution into a series of bivariate
copulas applied to original variables and to their conditional distribution functions. An example will help to
present this concept. Let X = (X1, X2, X3). Its density f(x1, x2, x3) can be factorised i.e. f(x1, x2, x3) =
f1(x1)f(x1|x2)f(x1|x2, x3). On the other hand, given that F (x1, x2, x3) = C(F1(x1), F2(x2), F3(x3)) we can
write joint density as

f(x1, x2, x3) = c123(F1(x1), F2(x2), F3(x3))f3(x3)f2(x2)f1(x1),

where c123(F1(x1), F2(x2), F3(x3)) is a 3-variate copula density. Further, we get
f(x1, x2) = c12(F1(x1), F2(x2))f1(x1)f2(x2) and f(x1|x2) = f(x1,x2)

f2(x2)
= c12(F1(x1), F2(x2))f1(x1). We can

also express f(x1|x2, x3) as

f(x1|x2, x3) = c13|2(F (x1|x2), F (x3|x2))f(x1|x2) =

c13|2(F (x1|x2), F (x3|x2))c12(F1(x1), F2(x2))f1(x1).

Continuing this we arrive at

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3)c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))×
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×c13|2(F (x1|x2), F (x3|x2)).

Altogether, this means that we can model multivariate distribution by having bivariate copulas as building
blocks. Dependence between each two dimensions can be modelled flexibly and computation is fast. Such
decomposition can be presented graphically (Bedford 2002) and is called the (regular) vine. Our vine has 3
variables and two trees: first tree in which variables 1 and 2 as well as 2 and 3 are connected via bivariate
linking copulas, and second tree in which variables 1 and 3 are connected via a bivariate linking copula
conditional on 2. If at some tree bivariate linking copulas become independence copula we say that the
vine is truncated. Factor copulas (Nikoloulopoulos and Joe 2015) presented here are such truncated vines,
however (Nikoloulopoulos and Joe 2015) develop them as conditional independence model and we follow this
presentation.

We find that factor copula models based on t(4) and t(5) copulas provide better fit than standard multi-
variate normal model, which is a special case of models developed here. This suggest that our variables are
generated as a mixture of discreticised means which is typical for a sample which is a mixture of heterogeneous
groups. Furthermore, this suggests that there is enough dependence structure in categorical health data that
cannot be easily neglected. Such interdependencies cannot be detected with the counting approach and we
show a simple example of how such an approach obscures the dependence structure. These interdependencies
are present in all analysed group distributions which supports a joint modelling framework for health data.
The strongest dependence is with the items that express general optimism and such is the interpretation of
the underlying factor. The most heterogenous are groups defined along the employment status dimension.
For retired and disabled people the strongest dependence with the underlying factor is observed for self-
reported health status and mobility, whereas for the employed group items seem to be linked to the factor
more equally. Altogether this paper shows that there are substantial dependencies in health data which
cannot be easily neglected. Furthermore, the modelling approach offered here is feasible for high-dimensional
data.

The paper is organised as follows. Section 1 presents copula theory, with particular emphasis on ordinal
data and factor copula models. In Section 2 we present the dataset and the results of estimating 1-factor
copula models. Finally, we conclude (Section 4) by pointing to future research on improving modelling of
high-dimensional health distributions..

1 Theoretical model and its estimation
Before we present factor copula models that are suited for ordinal data we start with basic definitions
related to copula theory. We start with bivariate copulas, but generalisations to multivariate copulas are
straightforward (Nelsen 2006). The presentation of copula theory is based on (Nelsen 2006) and (Joe 2015).

1.1 Definitions
Let F , G be cumulative distribution functions. Let X ∼ F and Y ∼ G. It is a well-known fact that if X ∼ F
is a continuous random variable, then F (X) ∼ U(0, 1). If U ∼ U(0, 1) and F is a univariate cdf and F−1

is its generalised inverse, then X = F−1(U) ∼ F . Here X can be continuous or discrete. Moreover, for
U ∼ U(0, 1) and V ∼ U(0, 1) we obtain by the inversion two independent samples from F and G, which are
X = F−1(U) and Y = G−1(V ) respectively.

Definition 1. Let U ∼ U(0, 1), V ∼ U(0, 1), X ∼ F and Y ∼ G. Additionally, let (X,Y ) ∼ H. If H is
continuous, then (U, V ) = (F (X), G(Y )) ∼ C where C is a copula.

By definition, there are two marginal variables with cdfs and a function that combines these cdfs to return
bivariate distribution. A copula is therefore a bivariate, or, in general, a multivariate distribution function
whose margins are uniform. By Sklar’s theorem, such function exists and is unique for continuous variables:

Theorem 1. Let H be a bivariate cdf with univariate marginal cdfs, F and G. Then, there exists a bivariate
copula C such that H(x, y) = C(F (x), G(y)) for all (x, y) ∈ R. And conversely, if F and G are univari-
ate continuous random variables, then C(F (x), G(x)) is a bivariate distribution for (X,Y ) with marginal
distributions F and G, respectively.
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Theorem 1 ensures uniqueness of copula only for continuous distributions. For discrete distributions
there is a whole set of copulas which agree with Sklar’s representation H(x, y) = C(F (x), G(y)). The
problems related to copulas for discrete distributions are described in (Genest, Nešlehová 2007). Despite
numerous problems, these authors do conclude that “copula modelling remains a valid option for constructing
multivariate distributions with discrete margins” (pp. 507) and their article in fact shows that rank-based
inference for copula parameters is not recommended in the discrete case. Here we deal with ordinal data
that have mostly discrete distributions.2 To be precise, we deal with data that are ordinal i.e. invariant to
monotone transformations, and discrete i.e. probability mass is concentrated on a finite number of points. In
the discrete case copula function is determined uniquely on intersections of F (x), G(y) where x = 0, ...,K−1
and y = 0, ..., L− 1 with K and L being the number of categories of, respectively, x and y. We have:

F (y1, ..., yd) = C(F1(y1), ..., Fd(yd)) for yj ∈ {0, ...,K − 1} (1)

which leads to
C(u1, ..., ud) = F (F−11 (u1), ..., F−1d (ud)) for uj ∈ [0, 1] (2)

Copulas are particularly well-suited to study the dependence of ordinal data. As (Schweizer 1981) note:
“it is precisely the copula which captures those properties of the joint distribution which are invariant under
(...) strictly increasing transformations”. With ordinal variables the only relevant information we have is
about the ordering, therefore it is a very desirable property of a dependence measure to not change when
the variable is transformed by a monotone transformation. Not surprisingly, copula which takes marginal
cdf values has this property i.e. if CXY is a copula function corresponding to the bivariate distribution
of random variables X,Y and f, g are strictly monotonic continuous functions, then Cf(X)g(Y ) = CXY .
For other monotonic transformations of X,Y the copula’s behaviour is also known: for f increasing and
g decreasing Cf(X)g(Y )(u, v) = u − CXY (u, 1 − v) and for both f and g strictly decreasing it holds that
Cf(X)g(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).

As mentioned, copulas enable appropriate modelling of tail dependence. We will now define these concepts
formally. A bivariate copula C is reflection symmetric if for all 0 ≤ u1, u2 ≤ 1 and density c(u1, u2) =
∂2C(u1,u2)
∂u1∂u2

it holds that c(u1, u2) = c(1− u1, 1− u2). Otherwise, we say that C is reflection asymmetric and
has more probability in the upper or lower tail. Upper tail dependence focuses on the upper quadrant of the
distribution. It is measured by the upper tail dependence coefficient λU ∈ [0, 1]:

λU = limu→1−

(
C(u, u)

1− u

)
(3)

If the limit exists and equals 0, then C does not have upper tail dependence. If λU ∈ (0, 1], then C has upper
tail dependence. Similarly, if the limit given by:

λL = limu→0+

(
C(u, u)

u

)
(4)

exists, then C has lower tail dependence for λL ∈ (0, 1] and no lower tail dependence for λL = 0.
Only scale-invariant measures of association are suitable for ordinal data. These are, for example, widely

known association coefficients such as Kendall’s tau or Spearman’r rho. They are in fact measures based on
the copula. Here we use Kendall’s tau.

Definition 2. (Nelsen 2006) Let X and Y be continuous random variables with a copula C. Then the
population version of Kendall’s τ for X and Y is given by

τ(X,Y ) = −1 + 4

ˆ 1

0

ˆ 1

0

C(u, v)dC(u, v)

The sample version of Kendall’s tau is defined in terms of concordance. Each pair of observations from
the sample {(x1, y1), . . . , (xn, yn)} is either concordant (i.e. xi > xj , yi > yj or xi < xj , yi < yj) or discordant
(i.e. xi > xj , yi < yj or xi < xj , yi > yj). Kendall’s tau is then the difference in the number of concordant

2This is not always the case e.g. BMI is an ordinal variable, test scores too, and they both have continuous distributions.
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and discordant pairs divided by the number of all pairs. Here we use Kendall’s tau because copula models
with different parameters are not directly comparable, therefore parameter estimates and standard errors
need to be compared on a Kendall’s tau scale.

The dependence parameters θ vary across copula families. In order to compare different models, it is
necessary to calculate Kendall’s τ . The following transformation of copula parameters applies to Gaussian t
copulas with θ ∈ (−1, 1) (Hult 2002)

τ =
2

π
arcsinθ, (5)

whereas the following transformation applies to Gumbel copula with θ ∈ [1,∞) (Genest 1986)

τ = 1− 1

θ
. (6)

Therefore, Kendall’s τ for Gaussian and t copulas range from -1 to 1 and as for Gumbel, τ ∈ (0, 1), because
this copula models only positive dependence.

1.2 Parametric copula families
Parametric copula families are most commonly used for their convenient properties (Joe 2015) i.e. they are
easy to implement numerically as they have closed forms that do not contain integrals. Three copula families
are considered due to their distinctive attributes: multivariate normal copulas, t copulas and Gumbel copulas,
as well as related copulas, such as survival Gumbel (i.e. Gumbel copula rotated by 180 degrees to model
lower tail dependence instead of upper tail dependence characteristic for Gumbel). Normal and t copulas are
called elliptical copulas and Gumbel is a special case of an Archimedean copula. In describing various data
generating processes that lead to particular families of copulas we follow intuition given by (Nikoloulopoulos
and Joe 2015).

Let d be the number of (ordinal) variables whose multivariate distribution we would like to model. The
first family, further referred to as Gaussian, presents reflection symmetry and no tail dependence which means
that it is suitable when the data has been generating through some process of averaging (Nikoloulopoulos
and Joe 2015) e.g. in answering a question a respondent is taking an average experience from all the events
in his life relevant to this particular question. Gaussian copula is a good modelling choice when we expect the
majority of respondents to fall into the middle categories with little fluctuation. Gaussian copula is defined
in the following way

C(~u; Σ) = Φd(Φ
−1(u1), ...,Φ−1(ud); Σ) (7)

where ~u ∈ [0, 1]d and Σ is a d×d correlation matrix that serves as a parameter. For a bivariate copula, there
is only one parameter θ ∈ (−1, 1):

C(u, v; θ) = Φ2(Φ−1(u),Φ−1(v); θ) (8)

There is always one parameter needed for each pair of variables. For Gaussian copula, both λL = λU = 0.
t copulas, as opposed to Gaussian copulas, cluster more probabilistic mass on the tails, simultaneously

keeping the focus in the centre. Not only is it possible to set different degrees of freedom ν for the margins,
but also to control skewness. t copulas model answers which are generated as combinations of means. This
happens when respondents are of mixed populations, e.g. differ in sex or locations. Let T be univariate
Student’s t distribution cdf with ν degrees of freedom. Then, a multivariate t copula has the following form:

C(~u; Σ, ν) = Td,ν(T−1ν (u1), ..., T−1ν (ud); Σ) (9)

where Σ is positive definite parametric matrix. With ν → ∞, a Gaussian copula is obtained and for small

values of ν there is more probability in the joint upper and lower tails. For the bivariate case, Σ =

[
1 θ
θ 1

]
where −1 < θ < 1 and the copula cdf is:

C(u, v; θ, ν) = T2,ν(T−1ν (u), T−1ν (v); θ) (10)

6



Tails are symmetrical and the dependence coefficients can be written as:

λU = λL = 2Tν+1

(
−
√
ν + 1

√
1− θ√

1 + θ

)
(11)

where T stands for t Student cdf.
Gumbel copula family, on the other hand, is characterised by larger dependence in the upper tail, meaning

that probability mass of the joint distribution is shifted towards the extreme values. These copulas capture
only positive dependence. If two margins of K categories display negative dependence, one of them should
be recoded from K − 1 to 0 in order to use Gumbel copula. Such extreme value copulas are a good fit for
responses derived from best-case or worst-case scenarios. E.g. when asked about mobility limitation, the
respondent takes into account only events when his or her disability prevented them from performing some
actions and based on this he or she chooses lower categories. In other words, he or she takes the minimum
value of all the events relevant to the question.

Bivariate Gumbel copula with parameter θ is the following:

C(u, v; θ) = e−((−lnu)
θ+(−lnv)θ)

1
θ (12)

where 1 ≤ θ <∞.
We can rotate a Gumbel copula by 180◦ and thus obtain lower tail dependence; such transformation is

called survival Gumbel or reflected Gumbel copula. If (U, V ) ∼ C for bivariate C, then (1− U, 1− V ) ∼ Cr
and Cr(u, v) = u+ v − 1 + C(1− u, 1− v). Therefore, the survival Gumbel has the following form:

C(u, v; θ) = u+ v − 1 + e−((−ln(1−u))
θ+(−ln(1−v))θ)

1
θ (13)

Other possibilities include rotations by 90◦ and 270◦ to model negative dependence.

C90◦(u, v) = v − C(1− u, v) (14)

C270◦(u, v) = u− C(u, 1− v) (15)

Figure 1: Contour plots of bivariate copulas with different behaviour in the tails

(a) Gaussian (b) t(5) (c) Gumbel

Figure 1 [22, ?] illustrates the support of different copulas. The isolines are sets of points with the same
probability. There is more dependence in the tails if the mass is more concentrated around the diagonal.
Gaussian copula does not have this property and Gumbel copula has it for higher values i.e. in the upper
tail. For t copula tail dependence is symmetric.

1.3 Factor copulas. 1-factor copula model.
Inspired by the vine copula approach, (Nikoloulopoulos and Joe 2015) propose so called factor copula models
for multivariate ordinal data. These are latent variable models for the analysis of high-dimensional item
response data in which dependence comes from latent (unobservable) factors. This happens, for example,
when there are 40-50 items in a questionnaire but some of them are associated as they aim to model the
same concept (e.g. anxiety, depression). The theoretical concept is low-dimensional so latent (factor) models
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are suitable. The most well-known is the standard multivariate normal model. It is a special case of models
proposed by (Nikoloulopoulos and Joe 2015) where all bivariate linking copulas are Gaussian copulas. Factor
copula models can be interpreted as latent maxima/minima (in comparison to latent means) and as such they
place more probability mass in the tails than a model based on multivariate normal distribution. For the
first factor there are bivariate copulas that link each observed item (ordinal variable) with the latent factor,
and for the second factor there are bivariate copulas that link each observed item with the second factor
conditional on the first factor. As mentioned, the connection with vine copulas is that such factor models
are in fact truncated vine copulas, however, following (Nikoloulopoulos and Joe 2015) we will motivate them
as conditional independence models. An important computational advantage of factor copula models and
the reason why (Joe 2015) describes them as the best modelling choice for multivariate data, is the need to
estimate O(d) parameters instead of O(d2).

Definition 3. Let Yi = (Yi1, ..., Yid) be a vector of d ordinal variables each measured on a scale {0, ...,K−1}.
The p-factor model assumes conditional independence of Y1, ..., Yd given latent variables X1, ..., Xp (factors).
The joint probability mass function (pmf) is therefore:

P (Y1 = y1, ..., Yd = yd) =

ˆ d∏
j=1

P (Yj = yj |X1 = x1, ..., Xp = xp)dFX1,...,Xp (x1, ..., xp)

where FX1,...,Xp is the joint distribution of latent factors.

The conditional independence assumption allows us to replace d-dimensional integrals with the multipli-
cation of one-dimensional integrals. Copulas appear in how P (Yj = yj |X1 = x1, ..., Xp = xp) is modelled.
Here we present and estimate 1-factor copula model. Further research will focus on estimating 2-factor mod-
els for health data as well as more complex structured factor copula models (Krupskii and Joe 2015) which
preserve the group structure e.g. some items are by design more associated than others. As in a standard
model for ordinal data, factors gain their interpretation from the items they connect to the most i.e. via
higher values of copula dependence parameters. For example, in case of health data one might expect items
such as physical health and mobility to fall in one category (i.e. relate to one underlying factor), whereas
items such as depression and anxiety to fall in a different category (i.e. relate to the other underlying factor).
The factors are assumed to be independent to ease identifiability.3. Factor copula models do not have closed
form cdfs, however, each of the d items is connected to each factor with a bivariate parametric copula, and
typically no more than 2 factors are used. Moreover, the model allows mixtures of copula families, so the
dependence between each two items is modelled flexibly.

A significant feature of factor copulas is that they inherit tail dependence (Hua 2014). If, for example,
bivariate distributions of items j, k and factor X, namely, bivariate distributions of (Yj , X) and (Yk, X) are
characterised by more probability in the upper tail, then (Yj , Yk) also has upper tail dependence. Therefore,
one can infer from bivariate margins of the distribution of Y = (Y1, ..., Yd) which copula families should be
used with the data. If upper tail dependence is observed in (Yj , Yk), then a Gumbel copula should be used
both with (Yj , X) and (Yk, X).4

Let the cutpoints in the U(0, 1) scale be ajk = Φ(ζjk) where ζjk are corresponding cutpoints in the N(0, 1)
scale for j = 1, ..., d. Let X be a latent variable, X ∼ U(0, 1). Given Theorem 1 there exists a copula Cj
such that F(X,Yj)(x, yj) = Cj(x, FYj (yj)). Then, the conditional cdf is the following

FYj |X(yj |x) = P (Yj = yj |X = x) =
∂Cj(x, FYj (yj))

∂x
:= Cj|X(aj,yj+1|x) (16)

and we have that

P (Y1 = y1, ..., Yd = yd) =

ˆ 1

0

d∏
j=1

P (Yj = yj |X = x)dx =

ˆ 1

0

d∏
j=1

(Cj|X(aj,yj+1|x)− Cj|X(aj,yj |x))dx (17)

Clearly, Cj|X(aj,yj+1|x) − Cj|X(aj,yj |x) gives the probability of Yj = yj conditional on X = x. We have d
items so d bivariate linking copulas, so d parameters to estimate.

3They do not have to be independent for more complex structured factor copula models (Krupskii and Joe 2015)
4Or other copulas with properties similar to Gumbel like Galambos or Clayton.
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1.4 Two-step estimation

First, for a random vector ~Yi = (Yi1, ..., Yid) with i = 1, ..., n we estimate univariate cutpoints ajk for
j = 1, ..., d using empirical distribution:

âj0 = 0, âj1 = p0, âj2 = p0 + p1, ..., âjKj = pj0 + ...+ pj,Kj−1 = 1 (18)

with pk being a sample proportion, pk = 1
n

∑n
i=1 1{yi = k}. Note that Kj depends on j; the variables do

not need to have the same number of categories. Uniform cutpoints ajk = Φ(ζjk) are then converted to
corresponding cutpoints ζjk in N(0, 1) with Φ−1 i.e. inverse standard normal cdf. With these held fixed,
dependence parameters θ ∈Md×d are estimated using MLE approach and maximising log-likelihood function:

`(θ) =

n∑
i=1

lnP (Yij = yij , j = 1, ..., d; θ) =

n∑
i=1

lnP (~Yi = (y1, ..., yd), θ) (19)

The probability under the sum can be evaluated as (Panagiotelis 2012):

P (~Yi = (y1, ..., yd); θ) =
∑

k1=0,1

...
∑

kd=0,1

(−1)k1+...+kdP (Y1 ≤ y1 − k1, ..., Yd ≤ yd − kd); θ) (20)

which for d = 2 and θ ∈ R is in line with inclusion-exclusion principle:

P (~Yi = (y1, y2); θ) = P (Y1 ≤ y1, Y2 ≤ y2; θ)− P (Y1 ≤ y1, Y2 ≤ y2 − 1; θ)+

−P (Y1 ≤ y1 − 1, Y2 ≤ y2; θ) + P (Y1 ≤ y1 − 1, Y2 ≤ y2 − 1; θ) = Cθ(a1,y1+1, a2,y2+1)+

−Cθ(a1,y1+1, a2,y2)− Cθ(a1,y1 , a2,y2+1) + Cθ(a1,y1 , a2,y2) (21)

where y1 = 0, ...,K1 − 1, y2 = 0, ...,K2 − 1. One chooses copula family with the highest likelihood.

1.5 Simulation in R
Estimation was conducted using R package “CopulaModel” developed by H. Joe and P. Krupskii. For 1-factor
models, the following copulas were tested in the process, regardless of the initial diagnostics of the dataset:
Gumbel, survival Gumbel, Gaussian, as well as t copulas with 2, 3, 4, 5, 7 and 9 degrees of freedom.

The algorithm for copula simulation is as follows. For each group of respondents univariate cutpoints are
estimated based on the sample as in (18), and for each copula or a set of copulas d parameter values are
estimated in line with the formula 19 for the log-likelihood function. It is possible to maximise the function
numerically using the Newton-Raphson method but for large d it is extremely time-consuming. Inference
Function of Margins (IFM) described by H. Joe (Joe 2005) was used, since d = 24. This method is efficient
regarding both computing time and asymptotic variance. Using the vector of parameters, a simulation is
conducted to generate a twin dataset with the same number of observations whose multivariate distribution
is given by the copula. One should notice that since the forms of bivariate copulas in 8, 10 and 12 denote
continuous distributions, some figures have to be rounded up or down randomly. The obtained database
depends on seed settings of a random number generator. Afterwards, the same diagnostics can be run on
both original dataset and a simulated one for comparison.

2 Health modelling via 1-factor copula model
ELSA (English Longitudinal Study of Ageing5 is a survey of quality of life among older people in the UK.
Waves 1 and 6 (2002, 2012) were downloaded from the UK Data Archive. Although the dataset allows
longitudinal analyses, only cross-sectional were conducted to show if and how the conditions of the elderly
have changed over time.

5Marmot M., Oldfield Z., Clemens S., Blake M., Phelps A., Nazroo J., Steptoe A., Rogers N., Banks J. (2016), En-
glish Longitudinal Study of Ageing, Waves 0-7, 1998-2015 [data collection], 24th Edition, UK Data Service, SN: 5050,
http://dx.doi.org/10.5255/UKDA-SN-5050-11
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2.1 Data
The multivariate model comprises of 24 variables: 19 items describing control, autonomy, self-realisation and
pleasure, each rated on a scale from 1 to 4, self-reported health status, mobility, eyesight, hearing and pain
rating.

Table 1: CASP-19 variables
C1 How often feels age prevents them from doing things they like
C2 How often feels what happens to them is out of their control
C3 How often feels free to plan for the future
C4 How often feels left out of things
A1 How often can do the things they want to do
A2 How often family responsibilities prevent them from doing things they want to do
A3 How often feels they can please themselves with what they do
A4 How often feels their health stops them from doing what they want to do
A5 How often shortage of money stops them doing things
P1 How often looks forward to each day
P2 How often feels that their life has meaning
P3 How often enjoys the things they do
P4 How often enjoys being in the company of others
P5 How often looks back on their life with a sense of happiness
S1 How often feels full of energy these days
S2 How often chooses to do things they have never done before
S3 How often feels satisfied with the way their life has turned out
S4 How often feels that life is full of opportunities
S5 How often feels the future looks good to them

The data has been adjusted to fit the assumptions in the model. The number of categories differed across
variables and therefore was reduced to 4 by collapsing higher responses (pairing “very good” with “excellent”
as one category). Therefore, some items, such as health, vision and hearing, are self-rated on the following
scale: 1-“poor”, 2-“fair”, 3-“good”, 4-“excellent”. Both eyesight and hearing questions assume reporting the
senses using everyday correcting devices such as glasses, contact lenses or hearing aid. Blind people fall into
the first category of “poor” eyesight. Pain rating is derived from two separate questions: “Are you bothered
by pain?” and “How much does it hurt?” by adding the fourth, “no pain”, category. Therefore, the responses
are: 1-“severe”, 2-“moderate”, 3-“mild”, 4-“no pain”. Mobility was measured by asking the respondents about
how much difficulty they associate with walking for a quarter of a mile. The possible answers were: 1-“unable
to do it”, 2-“much difficulty”, 3-“some difficulty”, 4-“no difficulty”. Ordering of responses was reversed in some
cases to assure positive dependence. After all necessary adjustments, the waves 1 and 6 consist of 4650 and
7915 observations, respectively, as shown in Table 2.

We analyse the distribution of the groups defined based on sex, age (50-64 years old group and 65+),
employment (retired, employed, unemployed, disabled), as well as smoking (behavioural risk). This gives us
10 groups to analyse in each wave.

Table 2: Sample sizes by population groups
size (wave 1) % (wave 1) size (wave 6) % (wave 6)

males 2174 44,49% 3589 45,34%
females 2476 50,67% 4326 54,66%
age 50-64 2542 52,02% 3734 47,18%
age 65+ 2108 43,13% 4181 52,82%

non-smoking 3848 78,74% 7020 88,69%
smoking 802 16,41% 895 11,31%
retired 2329 47,66% 4558 57,59%

employed 1588 32,49% 2602 32,87%
unemployed 475 9,72% 468 5,91%
disabled 258 5,28% 287 3,63%
total 4650 7915

Source: Own calculations based on the ELSA Wave 1 and Wave 6

10



2.2 Descriptive statistics
As a first approximation, Tables 14 and 15 and Tables 11 and 12 contain information on, respectively, group
means and differences if scale 1-4 of ordinal variables is used. Figure 2 presents it graphically.

Figure 2: Mean values of variables in waves 1 and 6

Source: Own calculations based on the ELSA Wave 1 and Wave 6

It can be easily inferred that, on average, younger people tend to feel better physically than older people,
which does not, however, translate to better mental health. On the other hand, smoking can be seen related
to both worse physical and mental condition. The people who still work are of better general health but not
with respect to general happiness; here retired are better off. The unemployed are less satisfied than both
mentioned groups and the disabled present the worst condition of all. There is no visible pattern to how men
differ from women - each group dominates the other in nearly equal number of items and the differences are
often insignificant.

Comparing between waves (Table 13) what stands out is a considerable decline (of more than 0.1) among
the unemployed respondents which means that they feel worse than ten years ago. Items C1, C2, A4, S1 show
noticeable decline in all groups which indicates that people may feel more tired and physically constrained
by their conditions in wave 6 comparing to wave 1. In 2012 people of all ages over 50 reported significantly
better health and mobility than in 2002. People older than 65 have bettered in eyesight as well, however, both
hearing worsened in both age groups. Control domain consisting of variables C1, C2, C3 and C4 experienced
dramatic decrease regardless of the age of respondents; respondents feel less in control of their actions now.
Two variables concerning autonomy, A1 and A5, improved for 65+ age group. The first indicator refers to a
general power to do the things one wants to do and the latter indicates whether a respondent feels financial
constraints. Indicators measuring pleasure experienced a slight decline over the period.

3 Results
Table 3 presents bivariate count distributions of CASP-19 variables A5 and S5 simulated with various
copulas, as well as observed distribution. A5 refers to financial constraints, whereas S5 refers to prospects
for the future. Because item A5 is linked to negative events, the order of categories was reversed. The table
illustrates how many respondents are estimated to fall into each bivariate category, e.g. in the original study
there were 63 men who reported their money restrictions to occur “often” and who, simultaneously, never
feel that their future looks good. On the other hand, there were 483 men who were optimistic about their
future and did not feel constrained by money. From this initial diagnostics it seems that empirically A5 has
more probability in the centre, it is therefore a discretised mean variable, whereas S5 witnesses more mass
in extreme (maximum) values. This is why the joint probability is asymmetric and upper tail dependence
is observed. Simulations with Gumbel copulas have more mass in the upper quadrant but the least in the
lower quadrant of all estimated distributions. Gaussian copulas, on the other hand, underestimate the upper
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tails and shift the mass towards the middle categories, leaving little negative dependence. t copulas give the
closest approximation compared to the other families - t(5) and t(7) seem to be the closest fits for males
and t(4) or t(5) for females. The initial diagnostics show that the dependence of financial constraints and
one’s view about the future is not linear and is stronger for both those financially constrained and financially
unconstrained. These non-linearities cannot be detected with the Gaussian model and cannot be seen if the
data were dichotomised. With two four-categories variables there is nine different ways of where to put a
cutoff (three different ways for one item given that they are in an increasing order so that 1 in the lower
categories implies 1 in higher categories). In Table 4 we present the distribution of A5 and S5 among males
after the following dichotomisations: (i) a respondent has health problems if he reports categories 2, 3, or 4
for both indicators (ii) a respondent has health problems if he reports categories 3, or 4 for both indicators
(iii) a respondent has health problems if he reports category 4 for both indicators. Therefore, we observe
three 2 × 2 distributions. Marginal distributions change, but the dependence structure changes too and it
changes fundamentally. If cases (i) and (ii) are considered then we conclude that A5 and S5 are strongly
related in the upper tail, on the other hand this is reversed for (iii). Clearly, dichotomisation obscures the
dependence structure. Furthermore, from policy point of view, the existence of tail dependence implies that,
with marginals unchanged, there is a certain level of comorbidity in emotional health. Emotional health
conditions tend to occur together and tend to not occur together. In line with inequality measurement
theory axioms, such property of a health distribution implies that it is more unequal.

Table 3: Comparison of bivariate count distributions for items A5 and S5
males females

63 176 188 63 65 166 308 89
empirical 36 201 566 300 37 180 686 413

distribution 24 123 499 440 34 162 549 526
31 89 307 483 49 95 376 591

Gumbel

49 145 246 79 46 152 292 132
57 220 544 290 63 243 691 362
31 147 477 404 46 150 570 485
18 59 298 525 25 75 354 640

s.Gumbel

41 137 244 90 44 128 306 147
55 212 535 313 62 246 662 387
32 151 470 395 52 163 551 480
18 72 323 501 33 73 394 598

Gaussian

59 144 235 72 56 156 281 129
52 221 526 326 60 240 676 388
26 146 458 423 39 151 537 528
15 63 351 472 22 76 422 565

t(2)

75 158 160 104 75 179 220 166
32 218 579 300 35 214 715 377
9 118 508 416 20 131 617 488
30 95 303 484 46 105 354 584

t(3)

75 152 180 94 67 177 238 152
37 217 561 305 40 224 699 380
13 129 490 426 29 138 590 498
26 84 318 482 36 94 382 582

t(4)

72 149 191 88 64 173 248 141
41 225 550 308 44 235 691 383
19 128 481 425 34 138 572 510
22 80 325 485 30 87 398 578

t(5)

71 148 201 88 64 167 253 135
45 226 539 310 45 240 693 381
18 128 481 424 34 142 568 517
22 76 328 484 28 86 397 576

t(7)

69 148 207 81 62 167 262 133
43 227 541 312 52 235 690 382
24 135 474 424 32 146 555 519
16 72 334 482 27 85 400 579

t(9)

70 148 217 75 61 162 269 133
45 220 538 319 56 236 683 380
25 138 468 424 33 145 553 526
17 66 342 477 27 83 405 574

Source: Own calculations based on the ELSA Wave 1 and Wave 6

Table 4: Males joint A5, S5 distribution after dichotomisation with different cut-offs
Categories 2, 3, 4 = 1 Categories 3, 4 = 1 Categories 4 = 1

empirical 63 427 476 1117 1876 803
distribution 91 3008 267 1729 427 483

Source: Own calculations based on the ELSA Wave 1 and Wave 6
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Tables 5 and 6 display absolute values of the log-likelihood function for all tested copulas and univariate
distributions in both waves of the data. The smallest figures are emphasised in bold. Both waves are
dominated by t copulas with 4 degrees of freedom; in wave 1 only the groups of employed, unemployed and
disabled people can be estimated most accurately with a t(5) copula and in wave 6 there are two such groups,
the females and the unemployed. All tested distributions are characterised with intermediate dependence in
both upper and lower tail. Such interdependence is impossible to detect if the data are dichotomised and then
aggregated. Furthermore, the results imply that the responses are the mixture of discreticised means which
is typical for mixed populations (Nikoloulopoulos and Joe 2015). We thus find evidence that factor copula
model based on t copulas works better for our health data than purely Gaussian model; the improvement is
more evident for Wave 6 than Wave 1.

As to the interpretation of the factor we analyse the values of copula parameters corresponding to the
model with the maximum likelihood (Tables 16 and 17). The interpretation is available without the need for
a varimax rotation typical of factor models. Parameters that can be compared between models are given on
a Kendall’s tau scale (Tables 18 and 19). The higher the copula parameter, the more dependent a given item
on a factor, which provides for a factor’s interpretation. Figure 3 illustrates the parameters for the groups
of non-smokers (as they are most numerous). In wave 1 items S1 and S5 appear to be most linked with the
factor. They describe a person’s level of energy and views for the future, thus the factor can be interpreted
as general optimism in life. In wave 6 there are more items with dependence parameters close to 0.6; these
are S1, S3, S5, P1 and P3. The interpretation of factor one as measuring general optimism is now extended
to cover life satisfaction and the feeling of enjoyment about things one does.
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Figure 3: Parameters on a Kendall’s tau scale

(a) Wave 1

(b) Wave 6

Source: Own calculations based on the ELSA Wave 1 and Wave 6
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The most heterogeneity is found among groups based on employment status. In Wave 1 (Table 18) there
is substantial dependence of general health status and mobility for both retired and disabled and much less
for the employed group. In other words, among retired and disabled whether the person is mobile or not
is related stronger to his/her subjective health status than in the employed group. Furthermore, these two
are one of key health indicators for these two groups. The similar difference is observed for indicators C1
and C2 which measure how much one feels constrained by age and feels lack of control. These two are more
interdependent among retired and disabled than among employed group. In Wave 1 for the unemployed
group items such as P1 and P3 appear as the most informative of the underlying factor, whereas for other
groups all items in P (pleasure) category are equally important. P1 and P3 measure the enjoyment one
has about every day and things in life. In Wave 6, P1 becomes the key item for the employed group too.
All in all, the employed group seems different in terms of emotional health comparing to other groups. The
dependence parameters seem more evenly distributed in this group, suggesting that the underlying factor
may point to a general level of well-being, whereas for other groups, factor’s interpretation may be more
specific and focus mostly on physical limitations and the indicators for depression e.g. energy levels.

Tables 7 and 8 present univariate distributions of all items for two groups: males and females. There
are only small differences in the original and estimated margins. Margins were estimated with t(4) and t(5)
copulas for men and women respectively, with parameters given in table 17.

Table 7: Univariate margins for the group of males in wave 6
empirical distribution estimated with t(4) copula

1 2 3 4 1 2 3 4
health 273 642 1149 1525 276 638 1174 1501
walk 220 187 414 2768 226 168 421 2774
see 76 279 1359 1875 70 271 1417 1831
hear 209 762 1241 1377 216 783 1183 1407
pain 239 630 464 2256 251 642 457 2239
C1 374 1380 1094 741 359 1342 1148 740
C2 230 1023 1614 722 244 1024 1611 710
C3 142 492 1226 1729 142 498 1228 1721
C4 124 669 1376 1420 117 699 1341 1432
A1 78 238 1274 1999 73 244 1302 1970
A2 138 1031 1329 1091 150 1006 1340 1093
A3 93 302 1521 1673 89 304 1539 1657
A4 542 951 929 1167 537 922 930 1200
A5 490 1103 1086 910 500 1124 1053 912
P1 44 146 945 2454 36 137 965 2451
P2 87 282 1093 2127 78 273 1123 2115
P3 18 49 784 2738 16 47 779 2747
P4 21 96 1151 2321 11 106 1163 2309
P5 40 199 1120 2230 31 203 1141 2214
S1 229 795 1792 773 207 845 1765 772
S2 359 1394 1498 338 359 1364 1545 321
S3 93 284 1387 1825 95 285 1370 1839
S4 156 674 1577 1182 151 674 1565 1199
S5 154 589 1560 1286 154 582 1547 1306

Table 8: Univariate margins for the group of females in wave 6
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empirical distribution estimated with t(4) copula
1 2 3 4 1 2 3 4

health 256 782 1372 1916 268 769 1393 1896
walk 349 232 553 3192 370 222 540 3194
see 86 384 1681 2175 81 395 1685 2165
hear 109 522 1378 2317 104 532 1427 2263
pain 345 1038 571 2372 366 1002 562 2396
C1 375 1449 1433 1069 387 1492 1388 1059
C2 255 1305 1845 921 271 1333 1833 889
C3 219 612 1570 1925 244 627 1543 1912
C4 143 1031 1531 1621 142 1050 1517 1617
A1 94 348 1545 2339 96 345 1566 2319
A2 253 1268 1398 1407 235 1342 1317 1432
A3 104 299 1543 2380 90 311 1514 2411
A4 599 1222 1033 1472 560 1235 1006 1525
A5 628 1316 1271 1111 619 1359 1261 1087
P1 43 183 1139 2961 35 210 1145 2936
P2 69 267 1312 2678 70 287 1314 2655
P3 20 67 935 3304 17 66 957 3286
P4 18 66 988 3254 14 72 960 3280
P5 32 236 1332 2726 28 221 1310 2767
S1 280 960 2208 878 269 982 2221 854
S2 465 1574 1847 440 432 1557 1903 434
S3 123 374 1689 2140 132 374 1698 2122
S4 203 807 1910 1406 200 800 1921 1405
S5 185 603 1919 1619 171 635 1911 1609

Source: Own calculations based on the ELSA Wave 1 and Wave 6

There exists no coherent way to illustrate a 24-dimensional distribution, thus we present estimated bivari-
ate margins for variables health and A4 (Table 9) which measures the feeling of autonomy. The two variables
are expected to be dependent, since lower levels of general health imply e.g. mobility limitations. Indeed,
a vast majority of probability mass is gathered near the main diagonal as can be seen in Table 9. For each
decomposed group, the table contains output from a copula with the highest value of log-likelihood function
(cf. table 6). The maximum deviation in all presented values equals 8,11% (compared to the magnitude of
each subsample) and average deviation is lower than 2%.

Table 9: Bivariate count distributions of the models with the best log-likelihood
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empirical 1-factor

males

203 54 8 8 102 80 55 39
212 293 87 50 150 217 131 140
99 396 378 276 167 335 340 332
28 208 456 833 118 290 404 689

females

190 56 6 4 95 94 39 40
255 404 86 37 155 290 146 178
111 528 402 331 190 427 360 416
43 234 539 1100 120 424 461 891

age 50-64

156 44 6 5 61 54 53 59
157 248 86 46 104 140 121 138
64 338 380 333 114 292 344 405
28 160 497 1186 113 340 458 938

age 65+

237 66 8 7 155 113 35 25
310 449 87 41 223 332 191 137
146 586 400 274 220 519 374 318
43 282 498 747 127 398 401 613

non-smoking

312 94 11 9 157 117 71 60
396 586 151 71 266 448 266 260
189 827 696 513 278 700 656 610
66 403 946 1750 237 656 811 1427

smoking

203 54 8 8 102 80 55 39
212 293 87 50 150 217 131 140
99 396 378 276 167 335 340 332
28 208 456 833 118 290 404 689

retired

225 62 8 8 140 81 31 30
331 479 96 43 253 379 195 147
148 611 441 311 217 566 433 334
44 284 556 911 140 405 452 755

employed

20 18 4 2 9 7 6 16
52 148 59 33 25 102 78 115
32 251 284 263 31 182 233 352
13 129 380 914 47 277 419 703

unemployed

18 9 2 1 7 5 13 5
26 48 15 8 21 25 22 26
12 45 51 32 17 45 43 38
10 28 57 106 19 56 55 71

disabled

130 21 0 1 109 27 6 4
58 22 3 3 61 24 4 5
18 17 4 1 23 10 1 2
4 1 2 2 10 1 0 0

Source: Own calculations based on the ELSA Wave 1 and Wave 6

4 Conclusion
Considering causal links would add further layers of complexity to the model and is beyond the scope of this
proposal. However, there is still a lot to be learnt about the joint distribution of health. This is an area of
active research in the last decade too as detailed information on health has become available. A disaggregated
view of health will inform researchers and policymakers on most vulnerable groups (in terms of both worse
unidimensional health distributions and the incidence of multiple health deprivations) and on the potential
areas of intervention.

Factor copulas are indeed powerful and flexible tools in modelling multivariate data, including difficult
cases of high-dimensional and ordinal data that defy regular procedures (see e.g. Oh and Patton 2015).
They have been so far applied in psychometrics (Nikoloulopoulos and Joe 2015) and continuous stock returns
(Krupskii and Joe 2013), (Krupskii and Joe 2015), (Oh and Patton 2015). They are very flexible in modelling
complex dependence with particular emphasis on tail dependence. In this paper we present their usefulness
in modelling ordinal health data. The can detected complexities and nonlinearities in the data that are not
detectable to the methods proposed in the health and health inequality measurement literature so far. We
show that there is a potential in applying factor copula models to health data and provide evidence that
richer models provide for a better fit. The presentation here should be developed in the following directions:
(i) estimation of 2− and possibly 3-factor models (ii) estimation of structured factor copula models for
ordinal data where the group structure (such as autonomy, control etc. in CASP-19) is taken into account
in the statistical models (structured copulas have only been developed for continuous data (Krupskii and
Joe 2015)). Structured factor copulas are extensions to the Gaussian bi-factor model covered by (Gibbons
i Hedeker 1992) as well as (Holzinger i Swineford 1937). (iii) choosing different bivariate linking copulas in
a given tree, which has to be done with caution as it obscures model comparisons. Concerning the latter,
Table 10 illustrates bivariate distribution of variables C3 and S5. Clearly, they are upper dependent; the
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probability mass is concentrated in the upper quadrant. Not surprisingly, the corresponding count figures
delivered by the Gumbel copula provide the best fit.

Another important extension of the model is the addition of regression parameters, not only for marginals
(i.e. via probit regressions), but also for the dependence parameters, as dependence may potentially depend
on a different set of covariates.

Table 10: Comparison of modelling upper tail dependence of items C3 and S5
empirical Gumbel t(4) Gaussian

39 43 77 95 28 59 127 32 47 68 103 36 32 62 123 32
41 87 118 30 16 77 140 52 19 63 125 64 21 64 130 60
9 98 411 145 27 92 345 206 16 78 334 226 25 91 310 246
8 47 429 799 20 65 427 763 18 67 478 734 16 69 472 723

Source: Own calculations based on the ELSA Wave 1 and Wave 6
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5 Appendix

Table 11: t test for means
Wave 1 Wave 6

sex age smoking sex age smoking
health 0,042 (0,028) -0,195 (0,028)* -0,291 (0,037)* 0,05 (0,021)* -0,233 (0,021)* -0,326 (0,033)*
walk -0,063 (0,027)* -0,404 (0,027)* -0,122 (0,036)* -0,074 (0,02)* -0,343 (0,02)* -0,18 (0,031)*
see -0,084 (0,023)* -0,175 (0,023)* -0,125 (0,03)* -0,028 (0,016) -0,142 (0,016)* -0,142 (0,026)*
hear 0,284 (0,026)* -0,25 (0,026)* -0,059 (0,034) 0,31 (0,019)* -0,282 (0,019)* 0,008 (0,031)
pain -0,133 (0,03)* -0,089 (0,03)* -0,126 (0,04)* -0,171 (0,023)* -0,12 (0,023)* -0,152 (0,036)*
C1 0,108 (0,028)* -0,582 (0,027)* 0,016 (0,038) 0,125 (0,021)* -0,556 (0,02)* -0,06 (0,033)
C2 -0,003 (0,027) -0,017 (0,027) -0,102 (0,036)* 0,005 (0,019) -0,094 (0,019)* -0,123 (0,03)*
C3 -0,085 (0,029)* -0,15 (0,029)* -0,207 (0,038)* -0,063 (0,019)* -0,049 (0,019)* -0,181 (0,03)*
C4 -0,032 (0,026) 0,019 (0,026) -0,093 (0,035)* -0,07 (0,019)* 0,005 (0,019) -0,089 (0,03)*
A1 0,007 (0,024) -0,107 (0,024)* -0,178 (0,032)* -0,03 (0,016) -0,026 (0,016) -0,178 (0,026)*
A2 0,051 (0,028) 0,445 (0,027)* -0,006 (0,037) -0,025 (0,02) 0,333 (0,02)* 0,079 (0,032)*
A3 0,136 (0,023)* 0,111 (0,023)* -0,074 (0,031)* 0,103 (0,017)* 0,148 (0,016)* -0,065 (0,026)*
A4 0,03 (0,032) -0,418 (0,031)* -0,114 (0,042)* 0,023 (0,024) -0,419 (0,023)* -0,148 (0,038)*
A5 0,068 (0,03)* 0,262 (0,029)* -0,297 (0,039)* -0,011 (0,023) 0,315 (0,022)* -0,337 (0,036)*
P1 -0,017 (0,017) 0,048 (0,017)* -0,191 (0,022)* 0,004 (0,014) 0,103 (0,014)* -0,205 (0,022)*
P2 0,041 (0,021)* -0,019 (0,021) -0,192 (0,027)* 0,06 (0,016)* -0,006 (0,016) -0,194 (0,025)*
P3 -0,007 (0,014) 0,036 (0,014)* -0,125 (0,018)* 0 (0,011) 0,082 (0,011)* -0,181 (0,018)*
P4 0,118 (0,016)* 0,012 (0,016) -0,076 (0,021)* 0,12 (0,012)* 0,018 (0,012) -0,082 (0,019)*
P5 0,023 (0,018) 0,116 (0,018)* -0,19 (0,024)* 0,017 (0,014) 0,078 (0,014)* -0,178 (0,023)*
S1 0,035 (0,024) -0,21 (0,024)* -0,208 (0,032)* -0,015 (0,018) -0,15 (0,018)* -0,211 (0,029)*
S2 0,06 (0,025)* -0,308 (0,025)* -0,118 (0,034)* 0,017 (0,018) -0,212 (0,018)* -0,156 (0,029)*
S3 0,014 (0,022) 0,066 (0,022)* -0,191 (0,029)* -0,026 (0,017) 0,032 (0,017) -0,207 (0,026)*
S4 0,054 (0,025)* -0,14 (0,025)* -0,218 (0,033)* -0,01 (0,019) -0,107 (0,019)* -0,254 (0,029)*
S5 0,056 (0,024)* -0,163 (0,024)* -0,221 (0,031)* 0,041 (0,019)* -0,11 (0,018)* -0,223 (0,029)*

Table 12: t test for means of employment groups
Wave 1 Wave 6

employed unemployed disabled employed unemployed disabled
health 0,378 (0,029)* 0,027 (0,048) -1,254 (0,063)* 0,353 (0,021)* 0,041 (0,045)* -1,38 (0,056)*
walk 0,483 (0,027)* 0,204 (0,049)* -1,257 (0,067)* 0,436 (0,02)* 0,144 (0,046)* -1,323 (0,059)*
see 0,196 (0,024)* -0,051 (0,04)* -0,413 (0,053)* 0,151 (0,017)* -0,016 (0,036) -0,427 (0,046)*
hear 0,242 (0,028)* 0,127 (0,046)* -0,149 (0,061)* 0,233 (0,021)* 0,193 (0,043)* -0,109 (0,054)*
pain 0,251 (0,032)* -0,013 (0,052) -1,166 (0,068)* 0,251 (0,024)* -0,071 (0,05)* -1,177 (0,063)*
C1 0,578 (0,03)* 0,163 (0,049)* -0,347 (0,064)* 0,483 (0,022)* 0,197 (0,045)* -0,263 (0,057)*
C2 0,105 (0,029)* -0,082 (0,047)* -0,781 (0,062)* 0,103 (0,02)* -0,126 (0,041)* -0,717 (0,051)*
C3 0,175 (0,031)* -0,072 (0,05)* -0,545 (0,065)* 0,029 (0,021) -0,239 (0,041)* -0,635 (0,052)*
C4 0,029 (0,028) -0,137 (0,045)* -0,654 (0,06)* 0,023 (0,02) -0,176 (0,041)* -0,611 (0,052)*
A1 0,171 (0,026)* 0,029 (0,042)* -0,619 (0,056)* 0,053 (0,017)* -0,146 (0,035)* -0,752 (0,045)*
A2 -0,402 (0,029)* -0,365 (0,047)* -0,249 (0,06)* -0,304 (0,021)* -0,447 (0,043)* -0,105 (0,053)*
A3 -0,129 (0,025)* -0,159 (0,04)* -0,398 (0,052)* -0,167 (0,017)* -0,277 (0,035)* -0,385 (0,044)*
A4 0,598 (0,032)* 0,124 (0,054)* -1,301 (0,069)* 0,53 (0,025)* 0,118 (0,051)* -1,288 (0,063)*
A5 -0,219 (0,032)* -0,122 (0,052)* -0,836 (0,066)* -0,325 (0,024)* -0,489 (0,048)* -0,887 (0,06)*
P1 -0,021 (0,018) -0,091 (0,029)* -0,351 (0,038)* -0,074 (0,015)* -0,124 (0,029)* -0,576 (0,037)*
P2 0,042 (0,022) -0,065 (0,036)* -0,306 (0,047)* 0,028 (0,017) -0,064 (0,034)* -0,501 (0,044)*
P3 -0,015 (0,015) -0,086 (0,023)* -0,277 (0,031)* -0,057 (0,012)* -0,136 (0,023)* -0,43 (0,029)*
P4 0,012 (0,017) -0,038 (0,027)* -0,162 (0,036)* 0,003 (0,013) -0,05 (0,026)* -0,282 (0,033)*
P5 -0,057 (0,019)* -0,044 (0,03)* -0,308 (0,04)* -0,03 (0,015)* -0,16 (0,03)* -0,529 (0,038)*
S1 0,288 (0,025)* 0,054 (0,042)* -0,885 (0,055)* 0,199 (0,019)* -0,022 (0,04) -0,969 (0,05)*
S2 0,304 (0,027)* -0,027 (0,045) -0,505 (0,058)* 0,218 (0,019)* -0,056 (0,039)* -0,55 (0,049)*
S3 0,018 (0,023) -0,025 (0,038) -0,739 (0,051)* -0,012 (0,018) -0,203 (0,036)* -0,737 (0,045)*
S4 0,174 (0,027)* -0,007 (0,044) -0,507 (0,058)* 0,13 (0,02)* -0,174 (0,041)* -0,675 (0,051)*
S5 0,2 (0,025)* 0,062 (0,041)* -0,659 (0,055)* 0,117 (0,019)* -0,104 (0,04)* -0,789 (0,051)*
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Table 13: t test for means across waves
males females age 50-64 age 65+ non-smoking smoking

health 0,036 (0,023)* 0,044 (0,022) 0,076 (0,021)* 0,038 (0,023)* 0,028 (0,018) -0,007 (0,035)*
walk 0,046 (0,022) 0,036 (0,021)* 0,037 (0,019)* 0,099 (0,023)* 0,039 (0,018) -0,019 (0,033)*
see 0,034 (0,018) 0,09 (0,017)* 0,059 (0,017) 0,092 (0,018)* 0,058 (0,015)* 0,041 (0,027)*
hear -0,066 (0,021)* -0,04 (0,02)* -0,012 (0,019)* -0,044 (0,021)* -0,058 (0,017)* 0,008 (0,032)
pain -0,03 (0,025)* -0,068 (0,024) -0,029 (0,023)* -0,06 (0,025) -0,057 (0,02)* -0,083 (0,038)
C1 -0,17 (0,023)* -0,152 (0,022)* -0,129 (0,021)* -0,103 (0,023)* -0,149 (0,018)* -0,225 (0,035)*
C2 -0,316 (0,021)* -0,307 (0,02)* -0,269 (0,019)* -0,346 (0,021)* -0,315 (0,017)* -0,336 (0,032)*
C3 -0,021 (0,021)* 0,001 (0,021) -0,053 (0,02)* 0,048 (0,022)* -0,026 (0,017)* 0,001 (0,032)*
C4 -0,056 (0,021)* -0,094 (0,02)* -0,071 (0,02)* -0,085 (0,021)* -0,083 (0,017)* -0,079 (0,032)
A1 0,025 (0,018) -0,012 (0,017) -0,029 (0,017)* 0,051 (0,018)* -0,005 (0,015) -0,005 (0,027)*
A2 -0,062 (0,022)* -0,139 (0,021)* -0,077 (0,021)* -0,19 (0,022)* -0,113 (0,018)* -0,028 (0,033)*
A3 -0,045 (0,018) -0,078 (0,017)* -0,089 (0,017) -0,052 (0,018)* -0,067 (0,015)* -0,058 (0,028)
A4 -0,109 (0,026)* -0,117 (0,025)* -0,081 (0,024)* -0,082 (0,026)* -0,116 (0,021)* -0,15 (0,04)
A5 0,049 (0,024) -0,03 (0,023) -0,04 (0,023)* 0,012 (0,025)* -0,006 (0,02)* -0,045 (0,038)*
P1 -0,109 (0,015)* -0,088 (0,014)* -0,13 (0,014)* -0,075 (0,015)* -0,107 (0,012)* -0,121 (0,023)*
P2 -0,088 (0,017)* -0,069 (0,016)* -0,083 (0,016)* -0,07 (0,018)* -0,089 (0,014)* -0,09 (0,027)*
P3 -0,052 (0,012)* -0,045 (0,011)* -0,075 (0,011)* -0,029 (0,012)* -0,049 (0,01)* -0,105 (0,019)*
P4 -0,025 (0,013)* -0,023 (0,012)* -0,026 (0,012) -0,021 (0,013)* -0,026 (0,01)* -0,032 (0,02)*
P5 -0,087 (0,015)* -0,093 (0,015)* -0,079 (0,015)* -0,117 (0,015)* -0,103 (0,012)* -0,091 (0,024)*
S1 -0,078 (0,02)* -0,127 (0,019)* -0,12 (0,019)* -0,061 (0,02) -0,117 (0,016)* -0,119 (0,031)*
S2 -0,063 (0,02)* -0,106 (0,019)* -0,114 (0,018)* -0,018 (0,02)* -0,089 (0,016)* -0,127 (0,03)
S3 -0,034 (0,018)* -0,074 (0,017)* -0,043 (0,017) -0,077 (0,018)* -0,065 (0,015)* -0,081 (0,028)*
S4 -0,043 (0,02)* -0,107 (0,019)* -0,084 (0,019)* -0,051 (0,021) -0,086 (0,016)* -0,123 (0,031)*
S5 -0,078 (0,02)* -0,093 (0,019)* -0,102 (0,018)* -0,048 (0,02) -0,098 (0,016)* -0,101 (0,031)*

retired employed unemployed disabled
health 0,035 (0,022)* 0,01 (0,025)* 0,05 (0,044) -0,091 (0,059)*
walk 0,052 (0,022)* 0,005 (0,023)* -0,008 (0,042) -0,014 (0,057)*
see 0,069 (0,017)* 0,024 (0,02)* 0,104 (0,035)* 0,055 (0,046)*
hear -0,044 (0,021) -0,054 (0,023)* 0,022 (0,041)* -0,004 (0,055)*
pain -0,068 (0,024) -0,068 (0,027)* -0,127 (0,048) -0,079 (0,065)*
C1 -0,125 (0,022) -0,22 (0,025)* -0,09 (0,044)* -0,041 (0,059)*
C2 -0,328 (0,02)* -0,329 (0,023)* -0,371 (0,04)* -0,264 (0,054)*
C3 0,039 (0,021) -0,107 (0,024)* -0,128 (0,041)* -0,051 (0,054)*
C4 -0,092 (0,02)* -0,099 (0,023)* -0,131 (0,04) -0,05 (0,054)*
A1 0,051 (0,018) -0,067 (0,02)* -0,124 (0,034) -0,082 (0,046)*
A2 -0,162 (0,021)* -0,063 (0,025)* -0,244 (0,043) -0,018 (0,057)
A3 -0,058 (0,018)* -0,097 (0,02) -0,176 (0,035) -0,045 (0,047)*
A4 -0,103 (0,025) -0,171 (0,028)* -0,109 (0,05) -0,09 (0,067)*
A5 0,042 (0,024)* -0,065 (0,027)* -0,325 (0,048) -0,01 (0,064)*
P1 -0,081 (0,014)* -0,134 (0,017)* -0,114 (0,029) -0,306 (0,04)*
P2 -0,074 (0,017)* -0,088 (0,019)* -0,073 (0,034) -0,269 (0,045)*
P3 -0,035 (0,012)* -0,077 (0,014)* -0,085 (0,024) -0,187 (0,032)*
P4 -0,019 (0,013)* -0,028 (0,015)* -0,031 (0,026) -0,138 (0,034)*
P5 -0,093 (0,015)* -0,066 (0,017)* -0,208 (0,03)* -0,313 (0,041)*
S1 -0,079 (0,019)* -0,168 (0,022)* -0,154 (0,039)* -0,163 (0,052)*
S2 -0,061 (0,019) -0,147 (0,022)* -0,091 (0,038) -0,107 (0,051)*
S3 -0,051 (0,018)* -0,08 (0,02)* -0,229 (0,035) -0,048 (0,048)*
S4 -0,055 (0,02)* -0,099 (0,022)* -0,221 (0,039) -0,223 (0,053)*
S5 -0,051 (0,019)* -0,134 (0,022)* -0,216 (0,039)* -0,181 (0,052)*
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Streszczenie
Wostatniej dekadzie mamy dostęp do szczegółowych danych zdrowotnych (np.: badanie SHARE).

Modelowanie łącznego rozkładu wielu wskaźników zdrowotnych nie jest łatwym zadaniem. Lit-
eratura nie jest duża i nie adresuje właściwie np.: struktury zależności między wskaźnikami.
Współwystępowanie chorób jest zaś kluczowe dla wydatków na opiekę zdrowotną. Celem artykułu
jest pokazanie, że zależności te występują w stopniu, który nie może być ignorowany oraz rozszerze-
nie literatury o metody, które modelują łączny rozkład zdrowia elastycznie i wydajnie obliczeniowo.
Są to dostępne od niedawna tzw. pair-copula constructions (PCC) (Aas et al. 2009). Mogą być
one użyte przy wielu wymiarach zdrowia, gdzie inne metody są niekonkluzywne (Duclos i Echevin
2012). W oparciu o dane z English Longitudinal Study of Ageing (ELSA) nt. statusu zdrowot-
nego, mobilności, wzroku, słuchu czy zdrowia emocjonalnego, estymujemy jednoczynnikowy model
(Nikoloulopoulos i Joe 2015). Wskaźniki zdrowia wykazują zależność w ogonach; kopule t(4) i
t(5) wykazują najlepsze dopasowanie. Szczegółowe zależności są nie do wykrycia przez niedawno
rozwinięte podejścia (Makdisi i Yazbeck 2014).
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